

Satellite data assimilation in model ALADIN/CZ P. Benáček, DA WD Prague, 2012

Outline

- New setup of model ALADIN
 - cycle 36t1 (innovations in VarBC)
 - VarBC stratospheric predictors
 - High peaking channels
- Experiments setup
 - Channel selection
 - Forecast impact verification (Temp, Ecmwf, Arpege)
 - Impact of AMSU-A, AMSU-B
- Case study

Model aladin set-up

- ALADIN new cycle 36t1ope.v01
- New domain (529x421 grid points, $\Delta x=4.7$ km)
- 87 vertical levels, mean orography
- time step 180 s, 3h coupling from Arpege
- Analysis cycle 00, 06, 12,18 UTC; forecast +54h
- B matrix was computed by the lagged NMC method
- BlendVar scheme consists of adding a 3D-VAR analysis on the top of digital filter blending. All analysis steps are sequential: *surface analysis – blending upper air – 3DVar*

Aladin set-up

New cycle 36t1

- Cycle 36t1 contains a lot of innovations for VarBC
 - <u>Add new modules</u>:
 - For allsky (varbc_allsky.F90), ozone radiance data (varbc_to3.F90, ...)
 - Add new namelist groups: (&NAMVARBC_RAD, &NAMVARBC_TO3, ...)
 - <u>New logical keys</u>: (yconfig%ncstart, yconfig%npredcs, ...)
 - \rightarrow leads to problems mainly with coldstart settings \rightarrow IASI presentation!!
- Satellite data assimilation improvements for new model setup:
 - Smaller domain: amount of satellite observations
 - 87 vertical levels:

better use of VarBC predictor for high atmosphere
Improve of bias correction for high-peaking channels

VarBC predictors

Bias correction B is obtained like linear combination of N state-dependent predictors p_i from the model first-guess, which are good correlated with bias:

$$B = \sum_{i=1}^{N} \beta_i p_i(x)$$

, where bias parameter β_i is a weight of N suitable predictors p(i). Bias parameter is included in the control vector and updated every cycle in variational assimilation system 3DVAR. Overview of all predictors is in the table below. For IASI channels are used predictors 0,1,2,5,6,8,9,10.

$p_i(x)$	Character
1	Thicknesses of pressure level 1000-300 hPa
2	Thicknesses of pressure level 200-50 hPa
3	Skin temperature
4	Total column precipitable water
5	Thicknesses of pressure level 1-10 hPa
6	Thicknesses of pressure level 5-50 hPa
7	Surface wind speed
8	Satellite nadir viewing angle
9	Satellite nadir viewing angle ^{**} 2
10	Satellite nadir viewing angle ^{**} 3
11	Satellite nadir viewing angle ^{**} 4
12	cosine solar zenith angle
14	TMI diurnal bias
15	0 over sea, 1 over land
16	0 over sea, nadir viewing angle over land
17	0 over sea, nadir viewing angle $**2$ over land
18	0 over sea, nadir viewing angle **3 over land

VarBC predictors

VarBC predictors

- New cycle: change thickness for predictor 5 (2-10hPa) (better coverage with model levels for new setup)
- Normalized predictors \rightarrow not problematic p5,6 (check possibly problematic predictors in screening listing)
- More info in IASI data assimilation presentation

Predictor definitions:

			po : 1	(constan	t)																
			p1 : 1	000 - 300hP	a thickne	ss minus	920	7.0 divid	led by	446.0											
			p2 : 2	00-50hPa	thickness	minus	849:	1.0 divid	led by	387.0											
			p3 : T	_skin		minus	28	5.0 divid	led by	20.5	Seti	in									
			p4 : t	otal colu	mn water	minus	2	5.0 divid	led by	17.8	301								_		
			p5 : 1	0-2hPa th	ickness	minus	11338	3.0 divid	led by	467.0	p5 : 10	-1hPa th	ickness	minus	5 1662	2.0 divid	led by	374.0)		
			p6 : 5	0-5hPa th	ickness	minus	1497	5.0 divid	led by	570.0	D6 : 50	-5hPa th	ickness	minus	5 1497	5.0 divid	led by	570.0)		
			p7 : s	urface wi	nd speed	minus	(5.0 divid	led by	3.6											
			p8 : n	adir view	ing angle	minus	5	5.5 divid	led by	28.7											
			p9 : n	adir view	angle **:	2 minus	853	3.0 divid	led by	744.0											
			p10: n	adir view	angle **	3 minus	9300	0.0 divid	led by	46700.0											
			D11: N	adir view	angle **	4 minus	1540000	0.0 divid	led by	2799000.0											
			D12: C	os solar	zen angle	minus	(0.0 divid	led by	0.3											
			p13: s	olar elev	ation	minus	-12	2.0 divid	led by	40.0											
			p14: T	MI diurna	l bias	minus		0.0 divid	led by	1.0											
			p15: 1	and or se	a ice mas	k minus	(0.0 divid	led by	1.0											
			p16: v	iew angle	(land)	minus		5.5 divid	led by	28.7											
			p17: v	iew angle	**2 (lan	d) minus	85	3.0 divid	led by	744.0											
			D18: V	iew angle	**3 (lan	d) minus	9300	0.0 divid	led by	46700.0											
Cros	s-correl	ations	P1 01 1	con ongeo		.,															
0103	3-correc																				
	nsample	mean	stdv	D 0	p1	p2	p3	p4	p5	рб	p7	p 8	p9	p10	p11	p12	p13	p14	p15	p16	p17
p18																					
p0	32678	1.000	0.000																		
p1	32678	-0.630	0.266		1.000	-0.956	0.403	0.417	0.882	2 0.762	-0.102	0.104	-0.246	0.038	-0.247	0.087		0.196	-0.256	0.094	-0.227
p2	32678	0.657	0.212			1.000	-0.325	-0.296	-0.843	3 -0.747	0.149	-0.018	0.369	0.023	0.349	-0.072		-0.147	0.252	-0.028	0.350
p3	32678	-0.446	0.270	_			1.000	0.443	0.609	9 0.499	0.536	0.235	-0.127	0.155	-0.149	0.026		0.190	-0.754	0.185	0.001
p4	32678	-0.820	0.152					1.000	0.459	9 0.392	0.335	0.343	0.063	0.200	0.008	0.029		0.227	-0.273	0.160	-0.020
p5	32678	-0.277	0.250						1.000	0.898	0.175	0.217	-0.348	0.107	-0.357	0.078		0.251	-0.439	0.182	-0.286
p6	32678	0.149	0.090							1.000	0.090	0.065	-0.579	-0.010	-0.578	0.032		0.132	-0.271	0.067	-0.491
р5	31914	-31.478	0.047						1.000	0.935	-0.248	0.045	-0.139	0.084	-0.133	-0.656		-0.049	0.596	-0.085	-0.163
рб	31914	1.139	0.089							1.000	-0.210	0.045	-0.072	0.094	-0.064	-0.668		-0.005	0.535	-0.076	-0.119

High peaking channels

- Maxima of weight function for AMSU-A heigh peaking channels are under the top of model (< 0.8 hPa)
- Improvement of bias and std for ch11, 12 and 13 for new model setup

Normalized weigthing function

Weigthing function: AMSU-A channels

Channel selection

- <u>Observation monitoring statistics</u> → based on comparison O-G departures; identify possibly-problematic channels (bias > 0.2 K)
 - All satellites passive assimilation 1.3.-20.4.2011
 - Warmstart from Arpege; 24-h cycling

Satellite	Sensor	0 UTC	6 UTC	12 UTC	18 UTC
	AMSUA		9,10		9-11
NOAA16	AMSUB		Big STD		Big STD
	HIRS		Х		х
NO 4 4 17	AMSUA				
(corrupted)	AMSUB	-	Х		х
(contupted)	HIRS	-	Х		Х
	AMSUA	5-12	5-11	5-12	
NOAA18	AMSUB	3,4	little data	3,4	
	HIRS				
	AMSUA	5-11 (no 8)	little data	5-11 (no 8)	
NOAA19	MHS	4	little data	3,4	
	HIRS	Х	Х	Х	
	AMSUA		6,8-11	5,6,8,9	little data
METOP	MHS		Big BIAS	3,4	little data
	HIRS		Х	Х	Х
MSG	29	2,4,6,7	2,3,4,6,7	2,3	2,4,6,7

- AMSU-A: ch6-10
- ~200-50hPa
- · Good bias correction
- AMSU-A: ch12,13
- High peaking channels (~10-5hPa)
- Big bias → blacklisted

- AMSU-B: ch3,4,5
- Low peaking channels (~800-300hPa) depend on surface properties (surface emissivity, surface temperature...)

Experiments setup

- previous channel selection, VarBC initialization from Arpege (24h-cycling)
- active assimilation for 1.-15.3.2011
- Thinning for all sensors 69.5km
- Ds03 reference: conv
- Ds02 active assimilation: conv, AMSU-A
- **Ds03** active assimilation: conv, AMSU-B, MHS

Verification of satellite impact

Synop & temp suitable for:

- surface verification (synop)
- low and middle atmosphere (temp) at 00,12 UTC (more observation)

Global analysis (ecmwf, arpege):

- better for verification of middle and high atmosphere (more data)
- worse resolution, description and parametrization of (near) surface processes

Impact for forecast AMSU-A

 ECMWF, TEMP: neutral impact, slightly improvement (for bias, rmse in analysis) for T, geop (10-50hPa)

Evolution of scores with forecast range (RMSE) Evolution of scores with forecast range (RMSE) GEOPOTENTIAL[10m2s-2] Diff: Ds03 - Ds02 GEOPOTENTIAL[10m2s-2] Diff: Ds03 - Ds02 1.0 Ecmwf Temp 0.9 20 22 20 30 30 50 50 70 17. 70 0.3 0.3 100 100 0.2 0 3 0.1 0.1 150 13.5 150 0.0 200 200 -01 0.1 250 -0.2 250 300 92 300 -0.3 -0.5 _0.4 400 7.2 400 72 500 56 500 0.6 700 - 3 700 3 850 1.5 850 1000 48 42 12 18 24 20 0 18 42 48

improvement & degradation

Impact for forecast AMSU-B

• Global analysis: positive impact for RH (200-700hPa) in bias and rmse

improvement & degradation

Impact for forecast AMSU-B

Impact for forecast AMSU-B

- <u>Temp</u>: significant degradation for RH (200-500hPa)
- Distribution of RMSE in domain for ECMWF
 - \rightarrow local improvement (35 temp observation in degradation fields)

Case study

- 13.-14.7.2011; typical summer storm situation
- unstable atmosphere (temperature startification), humid air
- interesed in first instability line (red arrow)

Case study

- Band of convective activity **13.7.2011 00-06UTC** (instability line)
- Weak storm in the south of Czech Republic

Combination radar + measurements (total 6h precipitation)

Assimilation vs. production

- The loss of information in production:
 - Short cut-off observations (smaller amount of conv observation; satellites the same amount)
 - Arpege short cut-off analysis (!)
 - IDFI (incremental DFI) on analysis (!)
- Long time experiment \rightarrow assimilation vs. production
 - REF (conv), EXP (conv, amsub)
 - Production in 12UTC for 15 days (1.-15.3.2011)
 - Verification +6h forecast (vs. temp)

Assimilatoin vs. production

• Degradation for surface in production (T, geop, RH) \rightarrow new tuning IDFI?

- Improve the use of sattelite data for new model setup (stratospheric predictors, high peaking channels)
- Channel selection (passive assimilation → plan to run longer 3 months period)
- Impact for forecast: AMSU-A (high atmosphere slightly positive in temperature), AMSU-B (middle and low atmosphere – positive in RH)
- Case study: impact for summer storm situation in assimilation → the loss of new information (observations) for surface in production (T, RH, geop)

Future plans

- More channel-selection methods to get optimal channel selection for active assimilation
- Seviri and IASI data assimilation
- Investigation of IDFI tuning to get better impact in production

Thank you for your attention.