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Motivation

• current ACRANEB scheme uses (among the others) following two

approximations for cloud treatment:

– coefficients kabs, kscat and asymmetry factor g do not depend on

cloud water content

– only mean saturation effect is taken into account

• these approximations lead to some known deficiencies, e.g. too small

surface insolation in cloudy case caused by too opaque clouds in

solar band
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Objectives

• develop simple and cheap cloud scheme which could be plugged into

ACRANEB, where:

– quantities kabs, kscat and g depend on cloud water content

– coefficients kabs, kscat are further modified by saturation effect,

taking into account optical properties and geometry of cloud

layers above/below current layer

• design the scheme flexibly, so that it can be adjusted to more

spectral bands when needed
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Saturation effect

Narrow spectral bands:

• dependency of coefficients kabs, kscat on wavelength is weak within

bands ⇒ clouds can be treated as grey bodies

• broadband coefficients kabs, kscat do not depend on spectral

composition of incoming radiation

Wide spectral bands (e.g. solar and thermal, as in ACRANEB):

• grey body approximation no longer fully valid for clouds

• broadband coefficients kabs, kscat depend on spectral composition

of incoming radiation

• spectral composition of incoming radiation is influenced by layers

above/below ⇒ saturation effect is non-local
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Illustration of saturation effect (1)
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• two identical layers, only absorption assumed

• in broadband, bottom layer appears to be more transparent
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Illustration of saturation effect (2)

• two adjacent layers (1 and 2), only absorption assumed

• monochromatic transmission function for composed layer 1 + 2:

Tλ12 = Tλ1 · T
λ
2

• broadband transmission function for composed layer 1 + 2:

T12 = T1 · T2 6= T1 · T2

• when transmission functions T λ1 and Tλ2 are positively correlated in

given spectral band, composed layer appears to be more transparent

than it should be according to broadband values T 1, T2:

T12>T1 · T2
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Problems with saturation effect

• broadband approach uses only spectrally integrated fluxes

• broadband optical coefficients depend on many non-local and/or un-

resolved details: optical properties of other layers, cloud geometry,

direction and spectral composition of fluxes entering the atmosphere

(solar band) or emitted by surface and atmosphere (thermal band)

• because of efficiency, parameterization of saturation effect must be

relatively simple
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Strategy (1)

• new scheme was developed and tested in idealized framework:

– multi-layer delta-two stream radiative transfer model

– only clouds taken into account, gases and aerosols ignored

– cloud geometry with random overlaps or maximum overlaps

between adjacent layers

– atmosphere illuminated from one side by direct flux (solar band)

or diffuse flux (thermal band), reflected and transmitted fluxes

evaluated

• cloud properties derived from experimental sample of spectral data

for 7 liquid and 16 ice cloud types

• monochromatic computations used as reference, composition of

incident flux is either solar spectrum at TOA (solar band) or

blackbody radiation with T = 255.8K (thermal band)
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Strategy (2)
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• averaged results of monochromatic simulations provide saturated

broadband transmittance T and reflectance R

• broadband values kabs, kscat giving the same T and R are sought

(broadband asymmetry factor g is not subject to spectral-type

saturation)
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Saturation factor cabs = kabs/kabs0 fitted on sample of

homogeneous clouds

solar band thermal band
(µ0 = 0.1,0.3,0.5,0.7,0.9)
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Saturation factor cscat = kscat/kscat0 fitted on sample of

homogeneous clouds

solar band thermal band
(µ0 = 0.1,0.3,0.5,0.7,0.9)
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Outline of the new scheme

• for layer j, unsaturated broadband values kabs0j , kscat0j and gj are

determined by Pade fits (dependency on liquid/ice water content)

• coefficients kabs0j , kscat0j are further reduced by saturation factors cabsj ,

cscatj given by simple fits:

c(δeff0j ) =
1

1+
(

δeff0j /δ
crit
0

)µ δcrit0 > 0 0 < µ ≤ 1

• effective optical depth δeff0j depends on layer unsaturated optical

depths δ0k and cloud fractions nk:

δeff0j = δ0j +
∑

k 6=j

f(nj, nk) δ0k 0 ≤ f ≤ 1

random overlaps: f(nj, nk) = (nk)
p

maximum overlaps: f(nj, nk) = [min(1, nk/nj)]
p (currently p = 8)
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Dependency of unsaturated coefficient kabs0 on cloud water content
(solar band)
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•/? broadband values for individual cloud types

Pade approximant used in new scheme

current ACRANEB setting (accounting also for mean saturation)
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Parameterized versus reference total transmittance T ,

sample of homogeneous clouds

(solar band, µ0 = 0.1,0.3,0.5,0.7,0.9)
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Parameterized versus reference total reflectance R,

sample of homogeneous clouds

(solar band, µ0 = 0.1,0.3,0.5,0.7,0.9)
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Parameterized versus reference total transmittance T ,

sample of homogeneous clouds

(thermal band)

current scheme new scheme
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Parameterized versus reference total reflectance R,

sample of homogeneous clouds

(thermal band)

current scheme new scheme
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Parameterized versus reference total transmittance T ,

sample of non-homogeneous 3-layer clouds

(solar band, µ0 = 0.1,0.3,0.5,0.7,0.9)

current scheme new scheme
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Parameterized versus reference total reflectance R,

sample of non-homogeneous 3-layer clouds

(solar band, µ0 = 0.1,0.3,0.5,0.7,0.9)
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Parameterized versus reference total transmittance T ,

sample of 2-layer clouds with maximum overlaps

(solar band, µ0 = 0.1,0.3,0.5,0.7,0.9)

current scheme new scheme
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Parameterized versus reference total reflectance R,

sample of 2-layer clouds with maximum overlaps

(solar band, µ0 = 0.1,0.3,0.5,0.7,0.9)
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Implementation in ALADIN

• new cloud scheme was coded in cycle 29t2, preliminary version is

now phased with other ALARO-0 developments

• computation of cloud optical properties is done in new subroutine

AC CLOUD MODEL called from ACRANEB

• new scheme is activated by logical key LCLSATUR in namelist

&NAMPHY

• technical validation showed total CPU increase about 15%, after

code optimizations it was reduced to 8% which is still too much

• comparison of radiative fluxes with FMR15 reference was a bad

surprise
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Vertical profile of net radiative flux averaged over model domain
(instantaneous value at noon, positive downward)

solar band thermal band
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Problem and its possible causes

• new scheme further reduces already underestimated net solar flux
(by about 3%)

• since it was tuned in idealized framework, it puts in question
reference monochromatic computations representing the “truth”

• problem might arise due to oversimplified reference (neglecting of
gases and aerosols, restricting to diffuse fluxes∗, assuming zero
surface albedo)

• investigations made so far indicate that all these simplifications are
acceptable

• main suspicion now falls on delta-two stream approximation used in
reference monochromatic computations (could it be improved, or
do we need some more sophisticated scheme?)

∗ only in original version, presented results were obtained including direct solar flux
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Summary

• new cloud scheme was developed and implemented in cycle 29t2

• experiments in idealized framework show its superiority over current

ACRANEB

• however, real case tests indicate slight amplification of known

deficiencies

• problem is under investigation, likely cause being imperfectness of

idealized reference leading to biased tunings
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