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ψ = σuψu + (1− σu)ψe

• Subsets for averaging (in space and time) become small

– no steady state
– no equilibrium budgets. → DC scheme closure

• Updraught mesh fraction σu can be large
⇒ mean grid-box properties ψ strongly affected by ψu:
updraughts are partially represented by the resolved flow

– ψe 6= ψ. → DC parametrization
– ω can take large negative values (resolved upwards motion). → DC properties

. + modification of ψ → Cloud scheme

L. Gerard, Alaro-1 Working days, Vienna, 12 May 2014



Statistical Cloud scheme

The Cloud scheme makes an instantaneous diagnostic at a given model level, assuming
some distribution of water and temperature over the grid-box area.

• Mean grid box ω → apparent resolved vertical motion,
cooling the mean parcel and increasing mean grid-box relative humidity.
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Statistical Cloud scheme

The Cloud scheme makes an instantaneous diagnostic at a given model level, assuming
some distribution of water and temperature over the grid-box area.

• Mean grid box ω → apparent resolved vertical motion,
cooling the mean parcel and increasing mean grid-box relative humidity.

• If Cloud scheme called for this mean grid-box situation
. ⇒ increased response as grid-box-scale condensation.

• If DC scheme starts from the same mean grid-box conditions
. ⇒ risk of double-counting

• Convection-resolving resolution:
⇒ mean grid-box vertical motions represent real local motions:
⇒ Cloud-scheme condensation can represent condensation in convective clouds...
. ...provided assumed distributions more uniform at finer resolution.
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3MT choice: towards complementarity and evolution
Aiming at complementarity down to a certain resolution

• Sequential organization of moist parametrizations.
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3MT choice: towards complementarity and evolution
Aiming at complementarity down to a certain resolution

• Sequential organization of moist parametrizations.

• Direct expression of DC effects through convective condensation and transport fluxes.

• Combining condensation from the cloud scheme and the subgrid convective scheme
to feed a single microphysics.

• Use of prognostic variables allows a gradual onset of deep convection, leaving time
for the feedback of other schemes from one time step to the next: downdraught,
microphysics, radiation...

• Interaction between time steps ⇒ protection of convective condensate against re-
evaporation in cloud scheme, evolution of a detrainment area gradually turning into
stratiform cloud.

• For complementarity, the DC scheme should represent a complement to the resolved
part of the updraught.
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Opposite choice: separation of processes lcvfirst=T

Maintain a clean separation between deep convection handled by the DC scheme and all
other clouds, treated by the Cloud scheme.

• 2 schemes active at all resolutions, no extinction.

• DC scheme has to be called first and represent the absolute updraught.

• Cloud scheme provides a complement for the non convective area

• Proves feasible taking advantage of 3MT features:

• protection of Nc in acnebcond (lxrvdev=T).

• Gradual conversion of detrainment area into
stratiform (relaxation with gcvtaude).
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Alternative Organizations
Complementarity of schemes

LCVFIRST=F
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3MT DC scheme: accvud

• Evolution in time with prognostic variables

• Direct expression of DC effects through convective condensation and transport fluxes.

• Ignores direct effects of resolved updraught:

– DC scheme ignores ω, assumes ωe ≡ 0.
– DC scheme pretends to represent the absolute updraught.
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3MT DC scheme: accvud

• Evolution in time with prognostic variables

• Direct expression of DC effects through convective condensation and transport fluxes.

• Ignores direct effects of resolved updraught:

– DC scheme ignores ω, assumes ωe ≡ 0.
– DC scheme pretends to represent the absolute updraught.

• Based on moisture convergence closure, and no explicit triggering criterion:

– Extremely cheap.
– A CAPE closure cannot be used.
– Reducing the forcing at small mesh fraction appears to improve the diurnal cycle

(slowing down the onset of convection, hence leaving more CAPE accumulate).

• Complementarity seems realized, down to 2km resolution...
. but not in a way that the subgrid part would fade out.
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Complementary subgrid draft scheme: accsu

Aiming at gradual extinction of the subgrid scheme leaving space to the explicit
representation of DC.

Principle: acknowledge the fake representation of a resolved updraught and provide a
complement to it (pertubation approach).

• Confinement in grid column
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Complementary subgrid draft scheme: accsu

Aiming at gradual extinction of the subgrid scheme leaving space to the explicit
representation of DC.

Principle: acknowledge the fake representation of a resolved updraught and provide a
complement to it (pertubation approach).

• Confinement in grid column

• Perturbation updraught properties account for mesh fraction and environment vertical
lapse rate: steady-state properties.

• Distinction between organized entrainment and turbulent mixing.

• Closure relations: extrapolated steady state.

– grid-column CAPE 6= environmental CAPE
– Expression of a moisture-convergence closure or a mixed closure.

• Evolution in time: geometrical and inertial

• Triggering of subgrid scheme 6= triggering of convective updraft
Need for triggering ⇒ cost ↗↗.
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CSD updraught specific features

• Building the profile

• Closures

– CAPE closure
– MoCon closure
– Prognostic relation

• Output fluxes: transport vs production

• Ancillary refinements

– rising top
– Mesh fraction frofile
– Note on advected prognostic variables
– Secondary closure vs trusting chance ?

• Triggering
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CSD steady-state profile
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⇒ q�u = q�be
H +

δqca − (4q)
H

(1− eH), H =
Λ′u4p
1− σu

4p = pl − pl+1.

• δqca: condensation from b = l + 1 to l: guess following moist adiabat + correction

to maintain qu = q�u + q = qsat(p,
s�u+s−φu
cp(qu)

).

• In accuvd: apply isobaric mixing, followed by return to saturation and moist
adiabatic ascent segment.
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CSD steady-state closure: CAPE
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p

ωu = ω�u + ω, σlu = σB · νl

considering effect of absolute updraught on environmental CAPE.
Ensembling effect (nfsig=2): ν < 1 at the upper part when σB <

1
2.
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CSD closure: MoCon, prognostic
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Evolution
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Evolution
• Updraught profile assumes an (extrapolated) steady-state

• Diagnostic closure yields a steady-state mesh fraction σ
‖
B

• Prognostic closure yields σ+
B

• Updraught velocity prognostic equation, using σu = νσ+
B:
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∣∣∣
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(∂ω
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Evolution
• Updraught profile assumes an (extrapolated) steady-state

• Diagnostic closure yields a steady-state mesh fraction σ
‖
B

• Prognostic closure yields σ+
B

• Updraught velocity prognostic equation, using σu = νσ+
B:

∂ω�u
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∣∣∣
sg

= Λw(ω�u)2 −
(∂ω
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− ω∂ ln ρ0

∂p

)
ω�u − ω�u

∂ω�u
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− αbρ0g2
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λu + Kdug
ρ0(1− σu)2

− δoe
1− σu
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�
u)

∂p
+
∂ ln ρ0
∂p

• Gradually rising updraught top (lrito=T):

– Memory of previously active levels (from σ−u , ω
�−
u ) and of fractional path between

two levels (scalar)
– Activity time of each level
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Fluxes

• Activity-time of each level: χδt→ time-step averages σ̃ ≡ χσ
−+σ+

2 .

• Perturbation production-flux: M�c = σ̃uω�u
. ⇒ 4Fcc = M�c δq

l
ca (lcvfirst=F).

• Absolute production flux: Mc = M�c + χσ̃uω

. ⇒ 4Fcc = Mcδq
l
ca (lcvfirst=T),

. ⇒ for local mass budget (σD).

• Transport flux: Mt =
M�c

(1−σ̃u) . ⇒ 4Jcuψ = 1
gMtψ

�
u

• accvud: M�c = Mc = Mt = σ+
u ω
∗+
u

L. Gerard, Alaro-1 Working days, Vienna, 12 May 2014



Secondary closure ?

• Ascent: σ∗ larger reduces ψ�u and ω
�‖
u (reduced buoyancy, increased drag)

• Closure: σ
‖
B ·
∫
...ω
‖
u...dp ∝ 1

(1−σ‖
B
)

::::::::::::

∫
T �vu...dp

• σ+
B ∝ σ

‖
B, ω+

u reduced by larger σ+
B

• accvud:

– assume ωe ∼ 0: requires ω = σuω
∗
u that is nearly all the time violated.

– simpler relations, no dependency of buoyancy on σu

• accsu:

– no assumption on ωe
– possibility to compute the guess σ∗ as a combination of σ−B and σM = fω(ω)

(gsigig + parameters defining fω).
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DC scheme triggering

When/how and at which level to trigger the updraught ?

Bougeault Ascent:

• progressive, one way
→ very cheap

• quite realistic results

• no control on triggering

wb

MoCon
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DC scheme triggering

When/how and at which level to trigger the updraught ?

USL Ascent:

• more physical;

• independent of vertical discretization;

• full control on triggering:
buoyancy kick (w, TKE, dd history...);

• iterative → more expensive.

USL 60 hPa
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DC scheme triggering

When/how and at which level to trigger the updraught ?

USL Ascent:

• more physical;

• independent of vertical discretization;

• full control on triggering:
buoyancy kick (w, TKE, dd history...);

• iterative → more expensive.
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Triggering criterion

• Kain-Fritsch (2004):

4Tv,KF =
[
γ(wLCL − w0 min(1,

zLCL
z0

)
]1/3

,
1

γ
∼ 0.01m s−1K−3, z0 = 2km,

fixed threshold w0 ⇒4Tv,KF increases with resolved velocity w.
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Triggering criterion

• Kain-Fritsch (2004):

4Tv,KF =
[
γ(wLCL − w0 min(1,

zLCL
z0

)
]1/3

,
1

γ
∼ 0.01m s−1K−3, z0 = 2km,

fixed threshold w0 ⇒4Tv,KF increases with resolved velocity w.
. workaround: limit the kick to the one necessary to pass the CIN.
. + require min cloud condensate present in a layer above base

• CSD perturbation approach (lcvfirst=f): use Cloud-scheme condensation

4Tv,RC = min(T1,
[
γ(Fcs − Fcs0)

]1/3
),

1

γ
∼ 0.005 kg m−1s−1K−3

Fcs0 resolution-dependent threshold
+ limitation by CIN
+ require min condensation within given height above base
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Real case tests

BB:

• Small domain at 8, 4, 2 and 1km. 8 and 4km are HS, 2 and 1km are NH.

• 41 levels, 60 levels at 1km.

• 12h run from cold start at 12pm, 2006-09-10.

• comparison with 1km run nocp and Wideumont radar (reprojected to the four grids).
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Example of 1-h precipitation fields (BB)
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Example of 1-h precipitation fields (BB)
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Example of 1-h precipitation fields (BB)
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Example of 1-h precipitation fields (BB)
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Example of 1-h precipitation fields (BB)
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Example of 1-h precipitation fields (BB)
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Example of 1-h precipitation fields (BB)
1km, ‘reference’
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Real case tests BB
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Real case tests BB
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Real case tests BB: updraught mesh fraction
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Real case tests BB: updraught mesh fraction
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Real case tests BB: updraught mesh fraction
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Real case tests BB: LCVFIRST +3MT (accvud)
Domain peak 1-hour precipitation evolution

Peak 500hPa σu > 0.01 evolution

Wideumont radar 3MT+nsdd 3MT+nsdd+LCVFIRST
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Real case tests BB: LCVFIRST +3MT (accvud)
Domain mean 1-hour precipitation evolution

Mean 500hPa σu > 0.01 evolution

Wideumont radar 3MT+nsdd 3MT+nsdd+LCVFIRST
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Real case tests BB: LCVFIRST +3MT (accvud)
Domain standard deviation 1-hour precipitation evolution

Standard Deviation 500hPa σu > 0.01 evolution

Wideumont radar 3MT+nsdd 3MT+nsdd+LCVFIRST
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Travel pictures

L. Gerard, Alaro-1 Working days, Vienna, 12 May 2014



Travel pictures

Should the model reach the same
amplitude as the radar while it
misses some precipitation systems ?

L. Gerard, Alaro-1 Working days, Vienna, 12 May 2014



A never ending story ?

• What do we really want :

– extinction or separation

– physical consistency or merely smooth and beautiful external behaviour ?
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A never ending story ?

• What do we really want :

– extinction or separation

– physical consistency or merely smooth and beautiful external behaviour ?

• All aspects of parametrization involved, with interactions – in particular

– closure, CAPE, MoCon, mixed + their variety.
– triggering and its cost.
– choice of prognostic variables: advecting discontinuous properties remains counter-

intuitive.
– environment assumptions / secondary closure
– is the bulk representation too schematic ?
– are we already loosing ourselves in too many options, too many tunings ?

• Is there a will to put energy in all this, and resources to help to it ?
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