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Introduction

• solar heating is one of the key atmospheric forcings

• interaction of radiation with earth’s surface, atmospheric gases,

aerosols and clouds significantly influences energy budget and is

thus important for determining weather and climate

• even if fundamental principles of radiative transfer are well known,

its straightforward numerical computation is not feasible in NWP

context

• main complicating factors are multiple scattering, number of

thermal exchanges growing quadratically with number of layers and

strong spectral variation of absorption coefficient

• set of approximations must be used to make the numerical

computation reasonably expensive, on the other hand one wishes

to keep as much realism as possible

• there is thus neverending cost versus accuracy dilemma
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Two ways to reduce CPU cost

• radiative transfer computations are expensive part of model physics

• one possibility how to reduce CPU cost is to perform radiative

computations on coarser grid than the rest of model physics

• main drawback of such approach is smoothed cloudiness field

entering radiation, as well as lower resolution outcome

• another possibility is to update optical properties of radiatively

active species not in every model timestep, but on time scales

sufficient to resolve their temporal evolution

• such intermittent approach can work only if amount of stored global

fields is reasonable
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Clouds as main intermittency limitation

24 hour point evolution of model fields at level 65 (∼ 850 hPa),

summer convection case
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Problem I – multiple scattering
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Radiative transfer equation

r

r+dr

Iν

Iν +dIν
n

n
′

Iν(n, r+dr)= Iν(n, r)

absorption
︷ ︸︸ ︷

−kabsν ρ |dr| Iν(n, r)+

emission
︷ ︸︸ ︷

kabsν ρ |dr|Bν(T (r))+

+ kscatν ρ |dr| ·

[

−Iν(n, r) +
1

4π

∮

4π
Pν(n · n′, r)Iν(n

′, r) dΩ′
]

︸ ︷︷ ︸

scattering

1

2

∫ 1

−1
Pν(µ, r) dµ = 1 µ ≡ n · n′ = cosΘ

ρ – density, ν – wavenumber, Iν(n, r) – intensity (radiance),

Bν(T ) – blackbody radiance, Pν(µ, r) – scattering phase function
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Radiative transfer equation for horizontally
homogeneous plane parallel atmosphere

µ
dIν

dδν
(µ, φ)=−Iν(µ, φ) + (1−̟ν)Bν(T ) +

+
̟ν

4π

[
∫ 2π

0

∫ 1

−1
Pν(µ, φ, µ

′, φ′)Iν(µ
′, φ′) dµ′ dφ′ +

+ S0ν exp

(

−
δν

µ0

)

Pν(µ, φ, µ0, φ0)

]

Pν(µ, φ, µ
′, φ′) ≡ Pν

(

µµ′ +
√

1− µ2
√

1− µ′
2
cos(φ− φ′)

)

dδν = (kabsν + kscatν )ρdz ̟ν =
kscatν

kabsν + kscatν

Iν – intensity of diffuse flux
S0ν – direct solar flux at the top of atmosphere

µ – cosine of zenithal angle
φ – azimuthal angle

(µ0, φ0) – direction from the sun
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Two stream approximation (solar band)

• in two stream approximation, angular distribution of intensity with

just two degrees of freedom is assumed

• angular integration then yields linear system for fluxes:

dF ↑

dδ
=α1F

↑ − α2F
↓ − α3

S

µ0
dF ↓

dδ
=α2F

↑ − α1F
↓ + α4

S

µ0
dS

dδ
=−

S

µ0

α1=2[1−̟(1− β̄)]

α2=2̟β̄

α3=̟β(µ0)

α4=̟[1− β(µ0)]

• shape of upscatter and backscatter fractions β(µ0) and β̄ is given

by choice of phase function and angular dependency of intensity I

• for homogeneous layer, above system can be integrated analytically,

providing linear relation between incoming and outgoing fluxes:
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Typical cloud phase function and its

Henyey-Greenstein approximation

Mie scattering phase function for water cloud with droplet effective radius 10 µm at
wavelength 500 nm, plus Henyey-Greenstein phase functions with asymmetry factors
0.85 and 0.75. Values at zero scattering angle are 9700, 86 and 28 respectively.
(taken from Wiscombe 1977)

PHG(µ) =
1− g2

[1 + g2 − 2gµ]3/2
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Delta scaling

• when the true phase function P is strongly asymmetric, it is

advantageous to approximate it as a combination of forward δ-peak

and less asymmetric scaled phase function P ′

P (µ) = 2fδ(1− µ) + (1− f)P ′(µ),

where δ is Dirac delta function and f is proportion of energy

scattered in forward direction

• inserting above phase function into radiative transfer equation and

repeating two stream developments leads to identical system (*) in

scaled variables:

δ′=(1−̟f)δ kabs
′
= kabs

̟′=(1− f)̟/(1−̟f) kscat
′
=(1− f)kscat

g′=(g − f)/(1− f)

• scaled system of equations is referred to as δ-two stream system

(*) It is assumed that direct radiation scattered in forward direction remains direct.
Exact identity holds only for µ0 such that scaled upscatter and backscatter fractions
fulfil relation β(µ0) = 2β̄µ0.
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Adding method

• for homogeneous layer, transmissivities and reflectivities a1–a5 can

be expressed analytically via layer optical depth δ and coefficients

of δ-two stream system α1–α4

• vertically non-homogeneous atmosphere can be represented as a set

of homogeneous plane parallel layers, each divided to clearsky and

cloudy parts

• fluxes leaving one layer are entering the next layer and are

redistributed between its clearsky and cloudy parts according to

cloud overlap assumption (this overlap is geometric and should

not be confused with spectral one)

• inside layer, there is no lateral exchange between its clearsky and

cloudy parts

• one ends up with linear system of equations for fluxes at layer

interfaces

• after specifying boundary conditions, it can be solved easily by

Gaussian elimination and back substitution
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Problem II – thermal exchanges

(will be covered by Jean-François

after explaining optical saturation)
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Problem III – spectral integration
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Optical saturation

• band transmission of non-scattering homogeneous layer is given as

τ =
∫

∆ν
exp(−kνu)wν dν,

where u is absorber amount and weight wν is proportional to

intensity of incident radiation

• from convex shape of exponential function it follows that:

τ = exp(−kνu) ≥ exp(−kνu)

• it means that band transmission is higher than transmission given

by mean absorption coefficient, and equality is approached only in

kνu ≪ 1 limit

• this effect is known as optical saturation and it is central problem

of spectral integration
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Saturation of cloud absorption
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Broadband saturation factor kabs/kabs
0 as a function of unsaturated optical depth δ0,

computed from narrowband data: red – Stephens 1978 liquid clouds; blue – Rockel
et al. 1991 ice clouds; black – mixed clouds. Thick cyan curve is fitted saturation
factor, thin black dotted curve is unsaturated transmission and thin grey solid curve
is saturated transmission.
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The key challenge for thermal 
radiation computations 

 Avoiding a CPU cost proportional to N² (i.e. 
what happens with emissivity methods) . 

 Allowing at the same time the accounting of 
multiple scattering, while handling a spectral 
structure of absorption that favours saturation.  

 Doing it as economically as possible, once in 
any system with N-proportionality. 

 Caring for the cloud-gas combination in terms of 
intermittency, when full computations at each 
time-step and each grid-point are too expensive. 

Two paths: Correlated k-distribution (CKD) & 
Net Exchanged Rates (NER) 

 



«k-distribution» / «Exponential Sum 
Fitting Technique» / «picket-fence» 

 For a given spectral interval, one goes back to a 
monochromatic framework for a series of «two-stream + 
adding» integrations where only the gaseous part will 
vary, the «grey» part of the computation remaining 
unchanged. The weighted average of intermediate 
results will eventually give directly the searched fluxes. 

 One may consider this as a sampling of the (logarithmic) 
histogram of the absorption intensities in the chosen 
spectral domains, but the ‘exponential sum fitting 
technique’ (ESFT) formalism is more «didactic»: 
 
 
 
 

 The p,T dependency may become more complex (CKD) 
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The Net Exchange Rate formulation 
(NER) for the thermal case 

 One divides the atmosphere in ‘bodies’ (layers 
for us) and, considering each pair of them, one 
directly computes the net balance of exchanged 
photons. 

 Contrary to all flux computation methods (CKD 
included), this allows to neglect a lot of 
symmetrically exchanged photons => simplicity. 

 It also leads to a principle of reciprocity: the 
warmer body will always heat the colder one => 
realism. 

 It ensures energy conservation => accuracy. 



Link between NER and saturation 



CTS+EWS+EBL decomposition of 
the thermal radiative exchange terms 

in absence of scattering 

CTS 

EWS 

EBL 



Method of idealised optical paths  

 The basis of this method is very simple. One 
computes exactly the optical depths of gaseous 
absorption for every layer in a simplified geometry 
and one reinjects them as such in the «two-stream + 
adding» formalism, together with the ‘grey body’ 
effects. 

 For the solar part, the computation for S is 
straightforward and that for F and F relies on the 
absorption during the return path of a photon 
reflected at the surface but never scattered. 

 For the thermal part, the «CTS» and «EWS» 
computations rely on obvious direct optical paths. 
There remains, like always, the ‘CPU barrier’ for the 
«EBL» calculations, if no additional parameterisation 
exists.  



Idealised optical paths 

EWS 

(multiple sources) 

Solar spectrum Thermal spectrum 

Parallel 

Reflected diffuse CTS 

(unique source) 



CTS-EWS-EBL concept (60’s) 

Historical perspective for the LW 
part of the RTE solution  

Emissivity methods (accurate but 
expensive, since with N²-scaled CPU costs)   

KD = ESFT (70’s) 

CKD with overlap 
problem (80’s) 

Extended CKD 
(90’s) 

FESFT 
(90’s) 

‘Poor-man’s-NER’ = 
ACRANEB (90’s) 

EBL(CTS,EWS,T,RH) (70’s) 

 RRTM   vs.   ACRANEB2  



Literature on the CKD formulation 
 Arking, A. and K. Grossmann, J. Atmos. Sci., 29 (1972) 937-

949. 
– Application to the atmosphere of the (stellar) idea of Ambartzumian 

(1936): ESFT = k-distribution method 
 Lacis, A., W.C. Wang and J. Hansen, NASA Conf. Publ. 2076 

(1979) 309-314. 
– Proposal to extend ESFT to the non-homogeneous case via correlated 

k-distribution (CKD), by introduction of a ‘T,p dependency’ for the 
pseudo-monochromatic k coefficients of the exponential sum fitting 

 Ritter, B. and J.-F. Geleyn, Mon. Wea. Rev., 120 (1992) 303-
325. 
– Intermediate solution between KD and CKD as well as integrated 

proposal for the gaseous overlap (FESFT) via a reference non-
gaseous computation => no offspring 

 Fu, Q. and K.N. Liou, J. Atmos. Sci., 49 (1992) 2139-2156. 
– Solution of the CO2-H2O overlap problem by a targeted extension of 

the CKD logic (T,p,q dependency).  
 Mlawer, E.J., S.J. Taubman, P.D. Brown, M.J. Iacono and S.A. 

Clough, Journal of Geophysical Research (1997) 16663-16682. 
– Start of the very successful RRTM development … 



Literature on the NER formulation 

 Green, J.S.A., Quart. J. Roy. Met. Soc., 93 (1967) 371-372. 
– Principles of the CTS-EWS-EBL decomposition 

 Joseph, J.M. and R. Bursztyn, Journal of Applied Meteorology, 
15 (1976) 319-325. 
– Proposal to compute CTS-EWS exactly and to infer EBL heuristically 

from there (with T and RH as additional input information) => no 
offspring 

 Eymet, V. , J.-L. Dufresne, R. Ricchiazzi, R. Fournier and S. 
Blanco, Atmospheric Research, 72 (2004) 239-261. 
– Revival (and in-depth analysis) of the NER partition (for Monte-Carlo 

coding, not NWP thus) after a long gap! 
 Masek, J. et al. (2015), in preparation. 

– See the various presentations at A1WD14 on a new way to consider 
the broadband NER approach for NWP … 



Band models

• computing band gaseous transmission directly by numerical quadra-

ture would require spectral resolution high enough to resolve

individual absorption lines

• such line by line approach is completely out of NWP scope and is

used only as very accurate reference

• band models make assumptions about distribution of line positions

and strengths and derive formula for band optical depth

• in case of Malkmus band model it has simple form

δ =
a

2b

(

√

1+ 4bu− 1
)

,

where coefficients a(T ) and b(p, T ) can be expressed via mean line

strengths and halfwidths in assumed spectral interval

• width of spectral interval must be much larger than typical line

halfwidth, but narrow enough so that weight function can be

assumed constant ⇒ narrowband approach
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Scaling approximations

• for single Lorentz line, non-homogeneous optical paths can be

treated by Curtis-Godson approximation

• it seeks equivalent homogeneous path giving the same weak and

strong line limits as non-homogeneous path ⇒ two-parametric

scaling

• thanks to correspondence of band model parameters with mean

line strengths and halfwidths, Curtis-Godson approximation can be

combined with band model approach

• Curtis-Godson approximation introduces largest error in the region

between weak and strong line limits

• it is least accurate for ozone, whose absorption increases with

decreasing pressure

• accuracy could be improved by using some 3-parametric scaling
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From narrowband to broadband

• in broad spectral band, assumptions of band model are not met and

variation of spectral weights cannot be neglected

• band model can account for these departures by using a posteriori

empirical corrections

• since the correspondence of band model parameters with mean line

widths and strengths is preserved, non-homogeneous optical paths

can still be treated by scaling approximation

• width of spectral intervals is then virtually unlimited (it is possible

to have single shortwave and single longwave interval)

• for mixture of gases with varying composition, broadband model

must be applied separately for each component and the effect of

non-random spectral overlaps between them must be parameterized
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Reordering of k values

Ozone absorption coefficient k [cm−1 atm−1] as a function of wavenumber ν (left) and
cumulative probability g (right) for pressure 25 hPa and temperature 220K.
(taken from Fu and Liou 1992)
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k-distribution method

• fraction of spectral interval where kν < k is given by smoothly

increasing function g(k)

• its inverse k(g) can be viewed as reordering of kν values

• band transmission of homogeneous layer can then be reexpressed

as:

τ =
1

∆ν

∫

∆ν
exp(−kνu) dν =

∫ 1

0
exp[−k(g)u] dg

• strength of reordering comes from the fact that unlike kν, func-

tion k(g) can be fitted easily, so the above integral can be computed

numerically as a sum of few decaying exponentials weighted by

increments ∆g

• limitation is the assumption of constant spectral weights, without

which reordering cannot work ⇒ width of spectral band is limited
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Correlated assumptions

• dependency of gaseous absorption on pressure and temperature

causes problems when k-distribution method is applied to non-

homogeneous optical paths

• band transmission of non-homogeneous layer is given as

τ =
∫ 1

0
exp

[

−

∫ z2

z1
k(g, p, T )ρdz

]

dg

only when orderings of kν values at different heights are the same

• this can be assured when correlated assumptions about kν(p, T )

are made

• they are valid for some idealized cases (single line, periodic lines,

multiple lines in weak and strong line limits), but not generally

• departure from correlated assumptions leads to blurring, with

temperature variation having stronger effect than pressure variation
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Blurring in correlated k-distribution method

Blurring of correlated assumptions due to the temperature effect for H2O in the
spectral region 400–540 cm−1 at a pressure 1000 hPa. Layer temperatures are 300K
and 273K (left), respectively 300K and 245K (right).
(taken from Fu and Liou 1992)
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Back to CKD versus NER

(continuation by Jean-François)
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Why all these efforts to ‘merge’ NER with the 
‘idealised path method’? (1/4) 

- Main flavour of the NER 
interpretation in ACRANEB2: the 
dominant terms (CTS & EWS) 
must be computed exactly, while 
the more expensive and less 
important EBL terms may be 
approximated. The aim is the 
same as in Joseph and Bursztyn 
(1976), but the application far 
more rigorous …   

Net fluxes (positive downwards) 

Now, back to some look on the other side of the fence  



Why all these efforts to ‘merge’ NER with the 
‘idealised path method’? (2/4) 

-The adjointing of the Laplace transform (a third solution not 
developed here) does not work in a straightforward way with 
multiple sources. 

-The ESFT has a drawback: 

Consequences of numerical 
undersampling in the 
approximation of Tr(u,p,T) 

Zoom (Ritter and 
Geleyn, 1992) 



Why all these efforts to ‘merge’ NER with the 
‘idealised path method’? (3/4) 

- The ESFT has a drawback (bis and ter): 

Intentionally exaggerated view 
of the problem (very small 
number of terms, solar case) 

Evaluation of the impact of a 
‘classical’ reduction of the 
number of terms. Five standard 
atmospheres, Fu and Liou 1992 



Why all these efforts to ‘merge’ NER with the 
‘idealised path method’? (4/4) 

Furthermore, use of the NER technique nicely leads to the idea of 
selective intermittency for otherwise too expensive radiative 
computations. Results concerning  gaseous transmission 
functions are ‘compacted’ by the NER ‘hierarchisation’, while the 
cloud aspects are reassessed at each time step (the combination 
then enters the ‘eight solving steps’, see elsewhere how …). 



CKD vs. NER (+ idealised optical 
paths), summing up 

 Both methods are deeply incompatible (using 
ESFT-type transmissivities in NER would be a 
nonsense => one is lead to the broadband 
approach for that case). 

 Symmetrically, the reduction of the problem to a 
series of quasi-monochromatic computations 
makes any CTS-EWS-EBL decomposition 
superfluous in CKD => CPU savings cannot 
come from any hierarchisation of such terms. 

 The pros and cons of each path are direct 
consequences of the above. 



CKD (RRTM) 
 Pros: 

– Clean interaction with multiple scattering (no need to evaluate 
the optical paths). 

– Quasi-infinite flexibility in the search for a cost/accuracy 
compromise. 

– Easy solution for the non-homogeneous paths (via the 
‘correlated’ aspect). 

 Cons: 
– Treating cheaply the gaseous spectral overlap problem requires 

compromises with respect to the ‘simplicity’ of the original 
method. 

– The numerical quadrature creates small but cumulative under-
shoots / over-shoots. 

– There is a hidden redundancy in the computations: one solves 
n-times the same cloudy contribution; since it cannot be 
separated, this creates a problem when going to intermittency. 

 



NER (ACRANEB2) 
 Pros: 

– The gaseous spectral overlap problem can be cleanly 
distinguished from the fitting of the individual transmissivities. 

– The capacity to have multiple level intermittency (clouds at each 
time-step, gaseous transmissions less frequently, bracketing 
weights even less frequently) is most probably a key asset. 

– Even if not yet completely realised, the complementarity 
between two independent methods for evaluating the bracketing 
weights is potentially a strong asset for future steps. 

 Cons: 
– All inaccuracies coming from the broad-band approach are 

combined, so that some ‘tuning’ is compulsory. 
– In particular, the consequences of the Curtis-Godson 

approximation for neither weak-line nor strong-line cases are 
directly felt. 

– The success for treating the Voigt case is welcome but 
unexplained. 

 


