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Why to re-arrange the IFS code ?

• The IFS code has reached a very high level of complexity. 
However, most configurations and options are set up and defined 
globally from the highest control level down.

• The maintenance cost has become very high.

• New cycles take longer and longer to create and debug.

• There is a long, steep learning curve for new scientists and 
visitors.

• It is becoming a barrier to new scientific developments such as 
long window weak constraints 4D-Var.

• Some algorithmic limitations:

– Entities are not always independent => H^t R−1 H is one piece (jumble) of 
code.

– The nonlinear model M can only be integrated once per execution => 
algorithms that require several calls to M can only be written at script level.



IFS growth: unfortunately, it’s not an investment: 

It’s growth of costs, not of benefits.



Modernizing the IFS

• Re-assess « modularity »:

– Define self-sufficient entities that can be composed, 
that define the scope of their variables (avoid « bug-
propagation ») => requires a careful understanding and 
definition of their interface

– Avoid as much as possible global variables

– Will require to widen the IFS coding rules and break 
the « setup/module/namelist » triplet paradigm

• Information hiding and abstraction

The above leads to object-oriented programming



Basics about OO-programming

• One key idea of Object-Oriented programming is to 
organize the code around the data, not around the 
algorithms.

• The primary mechanism used by object-oriented 
languages to define and manipulate objects is the class

• Classes define the properties of objects, including:

– The structure of their contents,

– The visibility of these contents from outside the object,

– The interface between the object and the outside world,

– What happens when objects are created and destroyed.



More basics about OO

• Encapsulation: content+scope of 

variables+interfaces (operators) put altogether

• Inheritance:  allows more specific classes to be 

derived from more general ones. It allows sharing 

of code that is common to the derived classes.

• Polymorphism/Abstraction: ../..



Even more basics about OO

• Polymorphism:  refers to the ability to re-use a 

piece of code with arguments of different types.

• Abstraction:  refers to the ability to write code that 

is independent of the detailed implementation of 

the objects it manipulates. It allows algorithms to 

be coded in a manner that is close to their 

mathematical formulations.



Abstraction: Incremental 4D-Var

on One Slide!



Toy OOPS

• ‘Toy’ data assimilation system to try out Object-
Oriented programming for IFS

• Abstract Part
– Code the algorithm in terms of base classes which serve to 

define interfaces to the data structures & functions 
• can be compiled separately

• Implementations
– Code Lorenz and QG models in terms of derived classes from 

the base classes which define data structures and functions
• without change of abstract part



Toy OOPS implementations
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Testing of Toy OOPS

C++ & Fortran90

• IBM 

– xlf90 and xlC

• NEC

– sxf90 and sxc++

• Linux

– pgf90 and pgcc

– gfortran and gcc

Fortran2003
• IBM 

– xlf

– fortran/xlf/12.1.0.4

• NEC

– not available
• Linux

– nagfor
– gfortran



Toy OOPS Summary

• Demonstrate writing a data assimilation algorithm in 
abstract terms such that each part is easily 
identifiable and switching one part does not mean 
complete code re-write

• Mixed C++/Fortran90 technically OK

• Compute done in F90 so Gflops same as now

• By design OO layer at top level – for data structure 
and algorithm definition

• Improve IFS interface to ODB - very suitable for OO



�IFS : a ‘F90 / C++ sandwich’

Main program: master.F90 
calls mpl_init etc.

Control layer in C++ : IFS_main
Abstract part:  IncrementalAlgorithm.cpp, 

Stepo.cpp, Hop.cpp,
State.cpp, Increment.cpp, etc.

IFS specific:    IFS_State.cpp, IFS_Increment.cpp, etc.

Computational parts in F90:
cpg.F90, callpar.F90, rttov.F90 etc.



Polymorphism
• ODB retrievals in H  (hop.F90), H 
(hoptl.F90), HT (hopad.F90) depend on 
the observation type (see ctxinitdb.F90) 

• OpenMP loop over observation type and 
each operator has a behavior depending 
on the observation type
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What have we learned from the 

toy system so far ?
• The basic design seems appropriate for our purpose.

• Data assimilation algorithm can be made independent from the 
model.

• The same basic design can be implemented in Fortran 2003, C++ 
or a mixture of C++ and Fortran 90. F2003 compilers are still rare 
(and we are debugging them …). OO programming in C++ 
requires fewer lines of code than Fortran, but Fortran developers 
will need getting used to its syntax.

• Tools (debugger, traceback, profilers, MPI, etc...) work for all 
languages.

• Performance should not be an issue since we only re-code the 
control level where almost no computing time is spent.



Transition from IFS to OOPS

• The main idea is to keep the computational parts of the existing 
code and reuse them in a re-designed structure => this can be 
achieved by a top-down and bottom-up approach.

• From the top: Develop a new modern, flexible structure => Expand 
the existing toy system.

• From the bottom: Move setup, namelists, data and code together.

– Propose new coding guidelines to that effect,

– Everybody participates by applying it to the part of the code they know.

– Create self-contained units of code.

• C++/F95 breaking levels: STEPO and COBS/HOP

• Put the two together: Extract self-contained parts of the IFS and 
plug them into OOPS => this step should be quick enough for 
versions not to diverge.



Afternoon session: questions and 

discussions …
• What language ?: combination C++/F95 => some training on C++ 

coding required, but the first to develop should then teach the 
others

• User interface:
– Xml files: incremental rather than full-default; no more namelists after 

OOPS !!!

– Must preserve the facility to read in model parameters from a model input 
file (like with « FA » files; for LAM at least)

– Interface with Python: possible collaboration with MF’s « VORTEX » 
project

– Change the S.C.R. tool at ECMWF ?: maybe move to Subversion (already 
used by Hirlam & M.O. / possibility to have HTML on-line extension)

• Documentation: needs to remain at a reasonable level (clean code
is « auto-documentary »)



Afternoon session: follow-on …

• At which level to split OO and standard F ? How far should OO go
into the IFS ?:

– Start with D.A. control; assess the interior of the forecast model(s) later (NL, 
TL, AD) => timestep organization, externalize physics ?, phys/dyn interface, 
timestep 1 specificity

– Break STEPO, make GP buffers the natural vehicle for initializing and 
passing model data at OO-level (spectral transforms and data become an 
« optional » entity within the models) 

– Later on, define grids and interpolators as Objects (both « base objects » and 
« instantiated objects »)

• High-level entities: ocean v/s atmospheric model, EPS and singular 
vector computation, EnsDA

• For « bottom-to-top » approach: write guidelines for helping 
developers to identify their entities



Opportunity v/s risks
• Opportunity:

– Move towards a more “modern” code, sharing more concepts with other system/I.T. 
codes

– Guidelines for the bottom-to-top approach will force a general and rather drastic 
review of the existing code (and options in the code) => some rarely used Research 
options may disappear !

– Develop new configurations of the assimilation at the OO-level: NL cost function, 
hybrid, filters, …

– Review of the obs operator interfacing, based on a scientific identification of the 
operators, while totally hiding the ODB database structuring (at the scientific level of 
the code)

– Some commonly defined, if not shared, low-level tools of the (otherwise Project-own) 
user-to-model interface

• Risks:

– Long-lasting efforts that may never end in practice ? 

– Some bets are implicit: future of Fortran programming in Met’ HPC code; actual 
benefit of OO-concepts once implemented in the whole of the IFS

– A rather tricky transition period to be organized, but the switch would be “at once” 
with no backward compatibility (of code) => Research developments will need to be 
separately adapted

– Impact on MF and Partner’s applications: especially LAM code



Impact on home/partner applications: a first glance

• LAM: re-organization of LELAM key

– Jb code & control vector handling

– General strategy for how to arrange LAM specificities in the context of OO 
(inheritance, polymorphism, … or some « dirty » tricks to negotiate with ECMWF ?)

– Handling of spectral space data in the model & new implementation strategy for 
biperiodization needed ?

– « revival » of LRPLANE in the spirit of modular interpolator code

• MF’s own 4D-VAR multi-incremental sequence: adaptations of Arpège 
specifities & question of shared C++ assimilation control level

• adaptation of Full-Pos/e927 with a well-defined interface for OOPS (2-3 
possible strategies, to be further decided) => ideally, one should be able to 
almost code the sequence « global forecast + e927 + LAM forecast » within one 
C++ piece of code

• Keep the possibility to set up the model parameters by reading from a model 
input file (923, (e)927, Arpège and LAM forecasts)

• DFI code: Jc-DFI but also regular D.F. initialization in global or LAM models
(state vector is both input and output)

• CANARI


