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QNSE fitting

with some complements on the 
stationarity-based ‘filter’



The ‘f ’ function (RMC01) and its computation

� A bridge is needed between the shear- and buoyancy- terms of the 
TKE prognostic equation.

� The ‘CBR’ approach obtains it in a case where the only stability
dependency is the one linked with the parameterisation of the TKE 
� TPE term, but this result can be shown to be absolutely general.

� There are two ways to compute ‘f ’ in practice:

− Either explicitly while solving the TKE equation;

− Or by solving a characteristic equation that expresses the 
stationnary solution shear term + buoyancy term + 
dissipation = 0 . This delivers a second order equation for f(Ri) 
that admits a solution for Ri going from -∞∞∞∞ to +∞∞∞∞ .
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The ‘f’ function (RMC01) and its computation

• We follow here the second path, since:

– We wish a solution without restriction of the range of possible 
Richardson-numbers;

– We obtain this feature in a way very similar to the argument of 
Zilitinkevitch et al.: ‘f ’ acts as a ‘filter’ imposing that
‘stationarity of the TKE equation + diagnostic TPE equation
���� conservation of TTE’.

• Under these conditions it can be shown that the characteristic
equation leading to ‘f ’ factorises as

with Rif the flux-Richardson-number. With this, χχχχ3(Ri ) has the 
same range of validity as ‘f ’, i.e. from -∞∞∞∞ to +∞∞∞∞ . Idem for φφφφ3(Ri ). 
.
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A key relationship

• We do not have yet the conditions for a full analytical 

solution of the problem. 

• But, adding one constraint (too complex to be explicited

here), that anyhow takes a different shape depending on 

which problem one wants to solve, one can obtain a unique 

equation linking the two stability dependency functions:

with C3 the inverse Prandtl number at neutrality and Rifc

the critical flux-Richarson-number, i.e. two of the three 

‘physical’ quantities relevant to our proposal (note indeed 

that ‘R’ does not appear in this equation).
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Choice of the method (stable range)

• We recall our ‘universal’ equation for RANS models. 

• At first sight, using it in order to simplify the QNSE fitting 
procedure would mean fitting independently φφφφ3(Ri ) and using a first 
order equation to obtain χχχχ3(Ri ).

• But, for high Ri values, the numerical QNSE procedure is less 
secure for the φφφφ3 values than for the χχχχ3 ones. So we shall solve a 
second order equation for φφφφ3 after the first fit of χχχχ3.

• For all this the available information (in the stable range) is:

– the derivatives at neutrality: -2.48 for χχχχ3 and D=-2.3 for φφφφ3

– the asymptotic χχχχ3 value at infinity: ~ 0.232

– C3=1.39 and Rifc=C3/(C3-D)

• One then obtain a one-parameter Pade fitting procedure with:

(X=13)

[0.75 ≈ 2.48 x 0.232/(1. - 0.232)]
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Verification of the function φ3(Ri ) for 
QNSE, after fitting χ3(Ri) and 

solving the linking second-order
equation

Published values

Independent SGS fit

Analytical fit (after

χ3 independent one)



A remaining degree of freedom (‘R ’)

• On top of cK, cεεεε (Reynolds case only) and C3, Rifc (general case), a 

dependency analysis shows that we still have a degree of freedom to 

consider in our new system of equations.

• Let us define, for the time being as a function of stability (and by 

‘eliminating’ the ‘f ’ function),

• R can be seen as a measure of the anisotropy. For an isotropic flow 

one shall have R≡≡≡≡1 (CBR case for instance); lower and lower R

values will indicate more and more anisotropy.

• The interesting feature here is that the asymptotic value of χχχχ3(Ri )

for Ri going to minus infinity is 1/R. So we may simply postulate 

that the QNSE unstable extension has a constant asymptote for the 

very unstable case and maximum continuity at neutrality.
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Choice of the method (unstable range)

• Recall of the available information:

– the derivatives at neutrality: -2.48 for χχχχ3 and D=-2.3 for φφφφ3

– C3=1.39 and Rifc=C3/(C3-D)

• One then obtain a homographic fitting procedure with:

(Y=4.16 is obtained from the little information available on QNSE 
functions in the slightly unstable case)

• φφφφ3 is again obtained by solving:

• A last verification can be made in the unstable range. Using

and comparing it with the Louis formulation allows computing the 
free convection constant C* of the latter (with 5.3 ‘observed’ value) 
as:
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What about the handling of anisotropy?

• After doing the analytical fit of χχχχ3(Ri ) one may look at 
what are the implicit values of R associated with the 
resulting function (fitted exclusively from published 
values)

– For Ri →→→→ -∞∞∞∞, we get R=0.404 (through extrapolation)

– For Ri = 0,     we get R=0.359

– For Ri →→→→ +∞∞∞∞, we get R=0.440

• After the quality of the ‘double fit’, the relative 
homogeneity of these three values is an indirect proof of 
the ‘solidity’ of our 3 parameter / 3 equation system. 

• The other constants corresponding to the QNSE fit are 
C3=1.39 (given by the authors) and Rifc=0.377 (vs. 0.4
suggested by the authors).



Remaining (and indeed
pending) ‘moist’ issues



Classification

� The general description of the link between
turbulence and diffusion may have given the 
impression that all ‘moist’ aspects are under control, 
once the SCC is supposed to be known.

� This not exaxctly true. Three issues (at least) still
deserve special attention:

− The influence of moisture on buoyancy via density effects;

− How to do the SCC vs. 1-SCC averaging? 

− The way to compute the TOM’s terms for qt in case of 
non-zero SCC.



Influence of moisture on 
buoyancy via density effects

� In the case when one assumes zero phase changes, 
the solution has been known for a long time. θθθθ should
be replaced by θθθθvl

, obtained via:

� This converts into a modification of the ‘dry’ N value.

� We have to derive an equivalent for the ‘fully moist’
N

m
value (this time of course with phase changes on 

the menu).
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How to do the SCC vs. 1-SCC 
averaging?

� The immediate temptation is to do it on N² (or on R
i
, 

which is equivalent, since we shall consider the shear
S as homogeneous across the whole mesh).

� However, owing to the many non-linearities present
in our problem (one of which having been recalled in 
the previous viewgraph), we shall have to do a 
complete thermodynamic analysis before confirming
this choice.

� The guideline shall here also be that the ‘conversion’ 
term can best be written as the Reynolds-type flux of 
density.



Computing the TOM’s terms for qt in 
case of non-zero phase changes

• The problematic is roughly the same as that of two
viewgraphs before.

• In the calculation of the heat flux correction,

may be computed with the 
gradients corresponding to the effective buoyancy flux.

• But we also need an equivalent

given here in the shape obtained without influence of the 
phase changes. That state of affairs shall have to be
consistently adapted to the most general case.
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Conclusion

Help from people interested in applied
themodynamics would now be most

welcome! 


