Core concepts of 3MT

Luc Gerard

29 March 2007

Topics

- 1. Towards unified physics
- 2. Prognostic treatment
- 3. Cascading and processes interactions
 - Parallel vs sequential physics
 - Combining subgrid and resolved
- 4. Main choices for updraught seen from physics, seen from dynamics
- 5. General layout of the cascade
- 6. Equivalent Cloud Fraction
- 7. Significant mesh fraction
- 8. Example experiments

L. Gerard, 29 March 2007

L. Gerard, 29 March 2007

– QE hypothesis : $\tau_D \sim 10^3 - 10^4 \ll \tau_{LS} (\sim 10^5 s?)$ is now inappropriate :

L. Gerard, 29 March 2007

- QE hypothesis : $\tau_D \sim 10^3 10^4 \ll \tau_{LS} (\sim 10^5 s?)$ is now inappropriate :
 - * Local effects : turbulent diffusion
 - * Anvil clouds, radiative interactions
 - * No physical separation, convective activity extends to Rossby radius of deformation (Mapes).
 - * Small grid boxes and small time steps

– QE hypothesis : $\tau_D \sim 10^3 - 10^4 \ll \tau_{LS} (\sim 10^5 s?)$ is now inappropriate :

– QE hypothesis : $\tau_D \sim 10^3 - 10^4 \ll \tau_{LS} (\sim 10^5 s?)$ is now inappropriate :

 \Rightarrow realistic dynamics requires evolution equation

– Means memorizing information and advecting it with the main flow :

– Updraught mass flux : $\sigma_u \cdot \omega_u$

- QE hypothesis : $\tau_D \sim 10^3 10^4 \ll \tau_{LS} (\sim 10^5 s?)$ is now inappropriate :
 - \Rightarrow realistic dynamics requires evolution equation
- Means memorizing information and advecting it with the main flow :
 - Updraught mass flux : $\sigma_u \cdot \omega_u$
 - The updraught profile sequence of QEs?!

- QE hypothesis : $\tau_D \sim 10^3 10^4 \ll \tau_{LS} (\sim 10^5 s?)$ is now inappropriate :
 - \Rightarrow realistic dynamics requires evolution equation
- Means memorizing information and advecting it with the main flow :
 - Updraught mass flux : $\sigma_u \cdot \omega_u$
 - The updraught profile
 - sequence of QEs?!
 - $\dots \rightarrow 3MT$ Fully Prognostic

- QE hypothesis : $\tau_D \sim 10^3 10^4 \ll \tau_{LS} (\sim 10^5 s?)$ is now inappropriate :
 - \Rightarrow realistic dynamics requires evolution equation
- Means memorizing information and advecting it with the main flow :
 - Updraught mass flux : $\sigma_u \cdot \omega_u$
 - The updraught profile
 - sequence of QEs?!
 - $\dots \rightarrow 3MT$ Fully Prognostic
 - Prognostic mixing

– QE hypothesis : $\tau_D \sim 10^3 - 10^4 \ll \tau_{LS} (\sim 10^5 s?)$ is now inappropriate :

- Means memorizing information and advecting it with the main flow : $\longrightarrow \omega_u$, σ_u , ω_d , σ_d , ζ_u
- Additional features
 - Explicit distinction of updraugt and environment mesh fractions
 - * Separate treatment of condensation, $\omega_e \neq \omega_u$
 - * Significant mesh fraction σ_u

– QE hypothesis : $\tau_D \sim 10^3 - 10^4 \ll \tau_{LS} (\sim 10^5 s?)$ is now inappropriate :

 \Rightarrow realistic dynamics requires evolution equation

- Means memorizing information and advecting it with the main flow : $\longrightarrow \omega_u$, σ_u , ω_d , σ_d , ζ_u
- Additional features
 - Explicit distinction of updraugt and environment mesh fractions

 $\psi_u \neq \psi_e \neq \overline{\psi}$, $0 \leq \sigma_u < 1$

– QE hypothesis : $\tau_D \sim 10^3 - 10^4 \ll \tau_{LS} (\sim 10^5 s?)$ is now inappropriate :

- Means memorizing information and advecting it with the main flow : $\longrightarrow \omega_u$, σ_u , ω_d , σ_d , ζ_u
- Additional features
 - Explicit distinction of updraugt and environment mesh fractions
 - $\psi_u \neq \psi_e \neq \psi, \qquad 0 \le \sigma_u < 1$
 - Cross interactions with sedimentation (e.g. downdraught).

– QE hypothesis : $\tau_D \sim 10^3 - 10^4 \ll \tau_{LS} (\sim 10^5 s?)$ is now inappropriate :

- Means memorizing information and advecting it with the main flow : $\longrightarrow \omega_u$, σ_u , ω_d , σ_d , ζ_u
- Additional features
 - Explicit distinction of updraugt and environment mesh fractions $\psi_u \neq \psi_e \neq \overline{\psi}, \qquad 0 \leq \sigma_u < 1$
 - Cross interactions with sedimentation (e.g. downdraught).
 - Effect of downdraught and history on updraught activity (prognostic mixing).

– QE hypothesis : $\tau_D \sim 10^3 - 10^4 \ll \tau_{LS} (\sim 10^5 s?)$ is now inappropriate :

- Means memorizing information and advecting it with the main flow : $\longrightarrow \omega_u$, σ_u , ω_d , σ_d , ζ_u
- Additional features
 - Explicit distinction of updraugt and environment mesh fractions $\psi_u \neq \psi_e \neq \overline{\psi}, \qquad 0 \leq \sigma_u < 1$
 - Cross interactions with sedimentation (e.g. downdraught).
 - Effect of downdraught and history on updraught activity (prognostic mixing).
 - Geographical separation of trigger and effect.

– QE hypothesis : $\tau_D \sim 10^3 - 10^4 \ll \tau_{LS} (\sim 10^5 s?)$ is now inappropriate :

- Means memorizing information and advecting it with the main flow : $\longrightarrow \omega_u$, σ_u , ω_d , σ_d , ζ_u
- Additional features
 - Explicit distinction of updraugt and environment mesh fractions $\psi_u \neq \psi_e \neq \overline{\psi}, \qquad 0 \leq \sigma_u < 1$
 - Cross interactions with sedimentation (e.g. downdraught).
 - Effect of downdraught and history on updraught activity (prognostic mixing).
 - Geographical separation of trigger and effect.
 - Time separation : anvils and downdraught can now make their own life.

Cascading(1) : parallel vs sequential physics

Parallel physics

all processes acting from the same initial state

- * Good modularity
- Implicit treatment induces steadystate error
- * No single-way interactions, no cross interactions
- * Parallel processes feeding on a single scarce resource results in
 - resource depletion (environmental blindness) or
 - double counting

Cascading(1) : parallel vs sequential physics

Parallel physics

all processes acting from the same init

- * Good modularity
- Implicit treatment induces s
 state error
- * No single-way interactions, no interactions
- * Parallel processes feeding on a scarce resource results in
 - resource depletion (environ blindness) or
 - double counting

Sequential physics

...with an *adequate ordering*.

- * Bad modularity
- * Steady-state error *may* be eliminated
- * Cross interactions by iteration of some parts / prognostic variables
- * Avoids resource depletion / double counting

Cascading(1) : parallel vs sequential physics

Parallel physics

all p	processes	s acting from the same init		
* Good modularity				
* Implicit treatment induces s			Sequential physics	
state error			with an <i>adequate ordering</i> .	
* No single-way interactions, nc			* Bad modularity	
interactions			* Steady-state error may be eliminated	
* P	* Parallel processes feeding on a * Cross interactions by iteration of			
SC	carce r	osource results in	/	gnostic variables
_	resou	Cascading of n	noist processes	depletion / double
	blind	(Retained	solution)	
_	doub	* Modularity can be maintained		
		* No progress on st	eady state error (?)	
		* Single-way intera	actions chosen for	
		physical realism		
* Cross interactions			s possible through	
prognostic variable			es	
		* Resource depletio	n and double coun-	
		ting both avoided	through carefull im-	
		plementation.		L. Gerard, 29 March 200

What drives the updraught?

- Local buoyancy induces vertical acceleration

What drives the updraught?

- Local buoyancy induces vertical acceleration
- Condensation reinforces buoyancy

What drives the updraught?

- Local buoyancy induces vertical acceleration
- Condensation reinforces buoyancy
- The vertical transport stabilizes the profile

What drives the updraught?

- Local buoyancy induces vertical acceleration
- Condensation reinforces buoyancy
- The vertical transport stabilizes the profile
- The larger scale moisture convergence restores the unstable profile.

What drives the updraught?

- Local buoyancy induces vertical acceleration
- Condensation reinforces buoyancy
- The vertical transport stabilizes the profile
- The larger scale moisture convergence restores the unstable profile.

 \rightarrow This feature judged essential for maintaining deep convection \leftarrow

What drives the updraught?

- Local buoyancy induces vertical acceleration
- Condensation reinforces buoyancy
- The vertical transport stabilizes the profile
- The larger scale moisture convergence restores the unstable profile.

 \rightarrow This feature judged essential for maintaining deep convection \leftarrow

 \implies Idea :

separate input profile \leftrightarrow convergence of vapour during time step

Fair share with two schemes

– Mass flux scheme

L. Gerard, 29 March 2007

- Mass flux scheme :
 - appropriate for large eddies like in deep convection

- Mass flux scheme :
 - appropriate for large eddies like in deep convection
 - replace subgrid variability by a single "equivalent" updraught (downdraught).

- Mass flux scheme :
 - appropriate for large eddies like in deep convection
 - replace subgrid variability by a single "equivalent" updraught (downdraught).
 - compute a single cloud profile by moving up (down) an air parcel with mean grid box properties along a pseudo-adiabatic trajectory with mixing.

- Mass flux scheme :
 - appropriate for large eddies like in deep convection
 - replace subgrid variability by a single "equivalent" updraught (downdraught).
 - compute a single cloud profile by moving up (down) an air parcel with mean grid box properties along a pseudo-adiabatic trajectory with mixing.
 - limitations : assumes a draught area σ_u with *mean* draught vertical velocity ω_u and *mean* draught property ψ_u . Vertical transport $\sigma_u \omega_u \psi_u$ generally underestimated (Yano et al. 2004).

- Mass flux scheme
- Production of cloud condensate : part of the condensate produced is the updraught is detrained and feeds the microphysical scheme. No precipitation occurs within the updraught area.

- Mass flux scheme
- Production of cloud condensate : part of the condensate produced is the updraught is detrained and feeds the microphysical scheme. No precipitation occurs within the updraught area.
- Prognostic approach :

- Mass flux scheme
- Production of cloud condensate : part of the condensate produced is the updraught is detrained and feeds the microphysical scheme. No precipitation occurs within the updraught area.
- Prognostic approach :
 - The updraught vertical velocity is obtained by a vertical motion equation (\rightarrow non hydrostatic framework)

- Mass flux scheme
- Production of cloud condensate : part of the condensate produced is the updraught is detrained and feeds the microphysical scheme. No precipitation occurs within the updraught area.
- Prognostic approach :
 - The updraught vertical velocity is obtained by a vertical motion equation (\rightarrow non hydrostatic framework)
 - The mesh fraction σ_u is obtained by a prognostic closure (no assumption of equilibrium between a hypothetic "larger scale forcing" and the convective activity).

- Mass flux scheme
- Production of cloud condensate : part of the condensate produced is the updraught is detrained and feeds the microphysical scheme. No precipitation occurs within the updraught area.
- Prognostic approach :
 - The updraught vertical velocity is obtained by a vertical motion equation (\rightarrow non hydrostatic framework)
 - The mesh fraction σ_u is obtained by a prognostic closure (no assumption of equilibrium between a hypothetic "larger scale forcing" and the convective activity).
- Small grid boxes : no assumption of negligible σ_u .

- Mass flux scheme
- Production of cloud condensate : part of the condensate produced is the updraught is detrained and feeds the microphysical scheme. No precipitation occurs within the updraught area.
- Prognostic approach :
 - The updraught vertical velocity is obtained by a vertical motion equation (\rightarrow non hydrostatic framework)
 - The mesh fraction σ_u is obtained by a prognostic closure (no assumption of equilibrium between a hypothetic "larger scale forcing" and the convective activity).
- Small grid boxes : no assumption of negligible σ_u .
- Vertical mixing profiles given a priori, modulated in various way.

- Mass flux scheme
- Production of cloud condensate : part of the condensate produced is the updraught is detrained and feeds the microphysical scheme. No precipitation occurs within the updraught area.
- Prognostic approach :
 - The updraught vertical velocity is obtained by a vertical motion equation (\rightarrow non hydrostatic framework)
 - The mesh fraction σ_u is obtained by a prognostic closure (no assumption of equilibrium between a hypothetic "larger scale forcing" and the convective activity).
- Small grid boxes : no assumption of negligible σ_u .
- Vertical mixing profiles given a priori, modulated in various way.
- Draughts affect large scale through transport and condensation (MTcoupling).

Subgrid as seen from dynamics

Subgrid as seen from dynamics

Cascade General layout

Cascade General layout

diluting $\overline{q_c}$ over $f \Rightarrow$ underestimation

diluting $\overline{q_c}$ over $f \Rightarrow$ underestimation concentrating $\overline{q_c}$ over $f^{cu} \Rightarrow$ overestimation

diluting $\overline{q_c}$ over $f \Rightarrow$ underestimation concentrating $\overline{q_c}$ over $f^{cu} \Rightarrow$ overestimation idea : weighted interpolation of intensive condensates

diluting $\overline{q_c}$ over $f \Rightarrow$ underestimation concentrating $\overline{q_c}$ over $f^{cu} \Rightarrow$ overestimation idea : weighted interpolation of intensive condensates

$$\overline{\psi} = \sigma_u \psi_u + (1 - \sigma_u) \psi_e$$

1. Different properties in updraught, environment and average

$$\overline{\psi} = \sigma_u \psi_u + (1 - \sigma_u) \psi_e$$

- Estimation of entrained properties

$$\overline{\psi} = \sigma_u \psi_u + (1 - \sigma_u) \psi_e$$

- Estimation of entrained properties
- $-\omega_e \sim 0$

$$\overline{\psi} = \sigma_u \psi_u + (1 - \sigma_u) \psi_e$$

- Estimation of entrained properties
- $\omega_e \sim 0$
- Impact in cascade update?

$$\overline{\psi} = \sigma_u \psi_u + (1 - \sigma_u) \psi_e$$

- Estimation of entrained properties
- $-\omega_e \sim 0$
- Impact in cascade update?
- 2. No precipitation in the updraught?

$$\overline{\psi} = \sigma_u \psi_u + (1 - \sigma_u) \psi_e$$

- Estimation of entrained properties
- $-\omega_e \sim 0$
- Impact in cascade update?
- 2. No precipitation in the updraught?
 - \Rightarrow apply microphysics and downdraught on residual area

$$\overline{\psi} = \sigma_u \psi_u + (1 - \sigma_u) \psi_e$$

- Estimation of entrained properties
- $-\omega_e \sim 0$
- Impact in cascade update?
- 2. No precipitation in the updraught?
 - \Rightarrow apply microphysics and downdraught on residual area
 - \Rightarrow rescale to mean grid box

$$\overline{\psi} = \sigma_u \psi_u + (1 - \sigma_u) \psi_e$$

- Estimation of entrained properties
- $-\omega_e \sim 0$
- Impact in cascade update?
- 2. No precipitation in the updraught?
 - \Rightarrow apply microphysics and downdraught on residual area
 - \Rightarrow rescale to mean grid box
- 3. Else : compute microphysics over entire grid box.

1. Different properties in updraught, environment and average

$$\overline{\psi} = \sigma_u \psi_u + (1 - \sigma_u) \psi_e$$

- Estimation of entrained properties
- $-\omega_e \sim 0$
- Impact in cascade update?
- 2. No precipitation in the updraught?
 - \Rightarrow apply microphysics and downdraught on residual area
 - \Rightarrow rescale to mean grid box
- 3. Else : compute microphysics over entire grid box.

 \rightarrow presently yields better results!

1. Different properties in updraught, environment and average

$$\overline{\psi} = \sigma_u \psi_u + (1 - \sigma_u) \psi_e$$

- Estimation of entrained properties
- $-\omega_e \sim 0$
- Impact in cascade update?
- 2. No precipitation in the updraught?
 - \Rightarrow apply microphysics and downdraught on residual area
 - \Rightarrow rescale to mean grid box
- 3. Else : compute microphysics over entire grid box.

 \rightarrow presently yields better results!

zA7h : 2005-09-10 12:00+04

zA7i : 2005-09-10 12:00+04

zA7h : 2005-09-10 12:00+05

zA7i : 2005-09-10 12:00+05

zA7h : 2005-09-10 12:00+06

zA7i : 2005-09-10 12:00+06

zA7h : 2005-09-10 12:00+07

zA7i : 2005-09-10 12:00+07

zA7h : 2005-09-10 12:00+08

zA7i : 2005-09-10 12:00+08

zA7h : 2005-09-10 12:00+09

zA7i : 2005-09-10 12:00+09

zA7h : 2005-09-10 12:00+10

zA7i : 2005-09-10 12:00+10

zA7h : 2005-09-10 12:00+11

zA7i : 2005-09-10 12:00+11

zA7h : 2005-09-10 12:00+12

zA7i : 2005-09-10 12:00+12

zA7h : 2005-09-10 12:00+13

zA7i : 2005-09-10 12:00+13

zA7h : 2005-09-10 12:00+14

zA7i : 2005-09-10 12:00+14

Alaro-0 L	UDEN=T
1h radar precipitation accumulation (mm)	Radar Wideumont

Starting at 10/09/2005 15 UT 12 /12

5 m/s

cA2q:2005-09-10 12:00+04

Aladin MaC

Radar

Alaro-0 Ll	JDEN=T
1h radar precipitation accumulation (mm)	Radar Wideumont

30 27

24

21

18

15

12

9

Starting at 10/09/2005 16 UT 12 /12

cA2q:2005-09-10 12:00+05

Aladin MaC

Radar

Alaro-0 LUDEN=T 1h radar precipitation accumulation (mm) Radar Wideumont

> 30 27

> 24

21

18

15

12

9

Starting at 10/09/2005 17 UT 12 /12

cA2q:2005-09-10 12:00+06

Aladin MaC

Radar

Alaro-0 LUDEN=T 1h radar precipitation accumulation (mm) Radar Wideumont

> 30 27

> 24

21

18

15

12

9

Starting at 10/09/2005 18 UT 12 /12

cA2q:2005-09-10 12:00+07

Aladin MaC

Radar

Alaro-0 LUDEN=T

Starting at 10/09/2005 19 UT 12 /12

RMI — Belgium

30 27

24

21

18

15

12

9

cA2q:2005-09-10 12:00+08

Aladin MaC

Radar

Alaro-0 LUDEN=F

1h radar precipitation accumulation (mm) Starting at 10/09/2005 20 UT 12 /12

RMI — Belgium

30 27

24

21

18

15

12

9

cA2q:2005-09-10 12:00+09

Aladin MaC

Alaro-0 LUDEN=F

Starting at 10/09/2005 21 UT 12 /12

30

27

18

15

12

9

cA2q:2005-09-10 12:00+10

Aladin MaC

Alaro-0 LUDEN=F

30 27

24

21

18

15

12

9

Starting at 10/09/2005 22 UT 12 /12

cA2q:2005-09-10 12:00+11

Aladin MaC

Radar

			· -
Alaro-U	LUI	JEN	

1h radar precipitation accumulation (mm) Starting at 10/09/2005 23 UT 12 /12

Radar Wideumont RMI – Belgium

9

cA2q:2005-09-10 12:00+12

Aladin MaC

Alaro-0 Ll	JDEN=T
1h radar precipitation accumulation (mm)	Radar Wideumont

Starting at 10/09/2005 15 UT 12 /12

Aladin MaC

30

27

18

15

12

9

Starting at 11/09/2005 00 UT 12 /12

24 21

Aladin MaC

Radar

