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Prognostic treatment

– QE hypothesis : τD ∼ 103 − 104� τLS(∼ 105s?)
is now inappropriate :

* Local effects : turbulent diffusion

* Anvil clouds, radiative interactions

* No physical separation, convective activity extends to

Rossby radius of deformation (Mapes).

* Small grid boxes and small time steps
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– Means memorizing information and advecting it with the main flow :

– Updraught mass flux : σu · ωu

– The updraught profile

sequence of QEs ? !
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Prognostic treatment

– QE hypothesis : τD ∼ 103 − 104� τLS(∼ 105s?)
is now inappropriate :
. ⇒ realistic dynamics requires evolution equation

– Means memorizing information and advecting it with the main flow :
. −→ ωu, σu, ωd, σd, ζu

– Additional features

– Explicit distinction of updraugt and environment mesh fractions

* Separate treatment of condensation, ωe 6= ωu

* Significant mesh fraction σu
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Prognostic treatment

– QE hypothesis : τD ∼ 103 − 104� τLS(∼ 105s?)
is now inappropriate :
. ⇒ realistic dynamics requires evolution equation

– Means memorizing information and advecting it with the main flow :
. −→ ωu, σu, ωd, σd, ζu

– Additional features

– Explicit distinction of updraugt and environment mesh fractions
. ψu 6= ψe 6= ψ, 0 ≤ σu < 1

– Cross interactions with sedimentation (e.g. downdraught).

– Effect of downdraught and history on updraught activity

(prognostic mixing).

– Geographical separation of trigger and effect.

– Time separation : anvils and downdraught

can now make their own life.
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Cascading(1) : parallel vs sequential physics

Parallel physics
all processes acting from the same initial state
* Good modularity
* Implicit treatment induces steady-

state error
* No single-way interactions, no cross

interactions
* Parallel processes feeding on a single

scarce resource results in
– resource depletion (environmental

blindness) or
– double counting
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Parallel physics
all processes acting from the same initial state
* Good modularity
* Implicit treatment induces steady-

state error
* No single-way interactions, no cross

interactions
* Parallel processes feeding on a single

scarce resource results in
– resource depletion (environmental

blindness) or
– double counting

Sequential physics
...with an adequate ordering.
* Bad modularity
* Steady-state error may be eliminated
* Cross interactions by iteration of

some parts / prognostic variables
* Avoids resource depletion / double

counting

Cascading of moist processes
(Retained solution)

* Modularity can be maintained
* No progress on steady state error ( ?)
* Single-way interactions chosen for

physical realism
* Cross interactions possible through

prognostic variables
* Resource depletion and double coun-

ting both avoided through carefull im-
plementation. L. Gerard, 29 March 2007
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Combining resolved and subgrid condensation

What drives the updraught ?

– Local buoyancy induces vertical acceleration

– Condensation reinforces buoyancy

– The vertical transport stabilizes the profile

– The larger scale moisture convergence restores the unstable profile.

→ This feature judged essential for maintaining deep convection←

=⇒ Idea :

separate input profile ↔ convergence of vapour during time step

L. Gerard, 29 March 2007



Fair share with two schemes

qt9 = qv9 + q`9 + qi9

⇓ F 0
`i, J

td
i , J

td
`

qsat(T9) −→ resolved condensation −→ F 0
vi, F

0
v`

qv0 , q`0 , qi0 , T0 and fstra

⇓

MOCON −→ Deep Convection −→ F 1
vi, F

1
v`, J

cu
v , Jcu

i , Jcu
`

qv1 , q`1 , qi1 , T1 and f = max(fstra, σD)

⇓

Autoconversion
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Main choices

– Mass flux scheme :

– appropriate for large eddies like in deep convection

– replace subgrid variability by a single “equivalent” updraught

(downdraught).

– compute a single cloud profile by moving up (down) an air parcel

with mean grid box properties along a pseudo-adiabatic trajectory

with mixing.

– limitations : assumes a draught area σu with mean draught vertical

velocity ωu and mean draught property ψu. Vertical transport

σuωuψu generally underestimated (Yano et al. 2004).
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Main choices

– Mass flux scheme

– Production of cloud condensate : part of the condensate produced is

the updraught is detrained and feeds the microphysical scheme. No

precipitation occurs within the updraught area.

– Prognostic approach :

– The updraught vertical velocity is obtained by a vertical motion

equation (→ non hydrostatic framework)

– The mesh fraction σu is obtained by a prognostic closure (no as-

sumption of equilibrium between a hypothetic ”larger scale forcing”

and the convective activity).

– Small grid boxes : no assumption of negligible σu.

– Vertical mixing profiles given a priori, modulated in various way.

– Draughts affect large scale through transport and condensation (MT-

coupling).

L. Gerard, 29 March 2007
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Subgrid as seen from dynamics
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Cascade General layout

(Fix negative contents

from advection)
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Equivalent cloud fraction
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