The grey-zone challenge

Luc Gerard

28 March 2007

Topics

- 1. Large-scale equations
- 2. The Cloud-Resolving Model
 - Observations
- 3. The Coarse-Resolution Model
 - Discretisation and Averaging
 - Resolved fraction
 - The parametrization problem
- 4. High Resolution LAM
 - Physical processes interaction
 - Makeshift solutions
 - Benefits of our solution
- 5. Fair share of a single resource
- 6. General layout
- 7. Grey zone manifestations
- 8. Conclusions

$$\begin{aligned} \frac{\partial \overline{s}}{\partial t} &+ \overline{\mathbf{V}} \cdot \nabla \overline{s} + \overline{\omega} \frac{\partial \overline{s}}{\partial p} = L \cdot (\mathcal{C} - \mathcal{E}) + C_p \cdot Q_R &- \frac{\partial \overline{\omega' s'}}{\partial p} &- \left(\frac{\partial \overline{u' s'}}{\partial x} + \frac{\partial \overline{v' s'}}{\partial y}\right) \\ \frac{\partial \overline{q}}{\partial t} &+ \overline{\mathbf{V}} \cdot \nabla \overline{q} + \overline{\omega} \frac{\partial \overline{q}}{\partial p} = -(\mathcal{C} - \mathcal{E}) &- \frac{\partial \overline{\omega' q'}}{\partial p} &- \left(\frac{\partial \overline{u' q'}}{\partial x} + \frac{\partial \overline{v' q'}}{\partial y}\right) \\ \frac{\partial \overline{\mathbf{V}}}{\partial t} &+ \overline{\mathbf{V}} \cdot \nabla \overline{\mathbf{V}} + \overline{\omega} \frac{\partial \overline{\mathbf{V}}}{\partial p} = f \mathbf{k} \wedge \overline{\mathbf{V}} - \nabla \overline{\phi} &- \frac{\partial \overline{\omega' \mathbf{V'}}}{\partial p} - \left(\frac{\partial \overline{u' \mathbf{V'}}}{\partial x} + \frac{\partial \overline{v' \mathbf{V'}}}{\partial y}\right) \end{aligned}$$

– B.L. turbulence : if small eddies \Rightarrow subgrid, local and mostly isotropic.

storage

advection sources

subgrid contributions

- B.L. turbulence : if small eddies \Rightarrow subgrid, local and mostly isotropic.
- Deep convection
 - is anisotropic : $w' \gg u', v'$;

storage

advection sources

subgrid contri

contributions

- B.L. turbulence : if small eddies \Rightarrow subgrid, local and mostly isotropic.
- Deep convection
 - is anisotropic : $w' \gg u', v'$;
 - implies large eddies (x-z), with $w' \gg \overline{w}$,
 - requiring a non-local (scheme and) closure

storage advection sources subgrid contributions

- B.L. turbulence : if small eddies \Rightarrow subgrid, local and mostly isotropic.
- Deep convection
 - is anisotropic : $w' \gg u', v'$;
 - implies large eddies (x-z), with $w' \gg \overline{w}$,
 - requiring a non-local (scheme and) closure
 - becomes partly resolved by horizontal grid...

- e.g. mass-flux scheme

- Vertical motions in updraught (and downdraught) *mostly* resolved...

L. Gerard, 28 March 2007

Vertical motions in updraught (and downdraught) *mostly* resolved...
 ...subsequent saturation also resolved.

- Vertical motions in updraught (and downdraught) *mostly* resolved...

...subsequent saturation also resolved.

- Non-hydrostatic framework.

- Vertical motions in updraught (and downdraught) *mostly* resolved...

...subsequent saturation also resolved.

- Non-hydrostatic framework.
- Only small eddies are subgrid
 - mostly isotropic, local, (down-gradient)

- e.g. prognostic TKE scheme

- Vertical motions in updraught (and downdraught) *mostly* resolved...

...subsequent saturation also resolved.

- Non-hydrostatic framework.
- Only small eddies are subgrid
 mostly isotropic, local, (down-gradient)

- CBL may still ask a non-local closure...

- e.g. prognostic TKE scheme

- Vertical motions in updraught (and downdraught) mostly resolved...

...subsequent saturation also resolved.

- Non-hydrostatic framework.
- Only small eddies are subgrid
 mostly isotropic, local, (down-gradient)
 - CBL may still ask a non-local closure...
- Subgrid variability affects saturation,

e.g. via a pdf (Smith).

- Vertical motions in updraught (and downdraught) *mostly* resolved...

...subsequent saturation also resolved.

- Non-hydrostatic framework.
- Only small eddies are subgrid
 mostly isotropic, local, (down-gradient)
 - CBL may still ask a non-local closure...
- Subgrid variability affects saturation,
- $\Rightarrow\,$ no need of specific parametrization for deep convection,...

e.g. via a pdf (Smith).

- Vertical motions in updraught (and downdraught) *mostly* resolved...

...subsequent saturation also resolved.

- Non-hydrostatic framework.
- Only small eddies are subgrid
 mostly isotropic, local, (down-gradient)
 - CBL may still ask a non-local closure...
- Subgrid variability affects saturation,

- e.g. prognostic TKE scheme
 - e.g. via a pdf (Smith).
- \Rightarrow no need of specific parametrization for deep convection,...
 - ... for resolutions finer than...?

Observed individual cell widths

Single updraught width often between 500m and 4km - wider above

Observed individual cell widths

Single updraught width often between 500m and 4km – wider above Single downdraught width often between 500m and 2km – wider below

 The small eddies — mostly isotropic, local, down-gradient handled by a turbulent diffusion scheme

(e.g. gradient-transport or prognostic TKE).

 The small eddies — mostly isotropic, local, down-gradient handled by a turbulent diffusion scheme

(e.g. gradient-transport or prognostic TKE).

- Subgrid variability included in the *resolved* condensation scheme,

e.g. through a pdf (Smith).

 The small eddies — mostly isotropic, local, down-gradient handled by a turbulent diffusion scheme

(e.g. gradient-transport or prognostic TKE).

- Subgrid variability included in the *resolved* condensation scheme,

e.g. through a pdf (Smith).

- Larger eddies (Deep convection) require a specific scheme :
 - circulation can climb up local gradients;
 - $-w' \gg \overline{w}$, inducing *subgrid* saturation, condensation, heat and water exchanges and transfers, modification of the radiation budget,... which cannot be ignored.

 The small eddies — mostly isotropic, local, down-gradient handled by a turbulent diffusion scheme

(e.g. gradient-transport or prognostic TKE).

- Subgrid variability included in the *resolved* condensation scheme,

e.g. through a pdf (Smith).

- Larger eddies (Deep convection) require a specific scheme :
 - circulation can climb up local gradients;
 - $-w' \gg \overline{w}$, inducing *subgrid* saturation, condensation, heat and water exchanges and transfers, modification of the radiation budget,... which cannot be ignored.
 - The convective circulation can extend over several grid-boxes, as far as the Rossby radius of deformation.

 The small eddies — mostly isotropic, local, down-gradient handled by a turbulent diffusion scheme

(e.g. gradient-transport or prognostic TKE).

- Subgrid variability included in the *resolved* condensation scheme,

e.g. through a pdf (Smith).

- Larger eddies (Deep convection) require a specific scheme :
 - circulation can climb up local gradients;
 - $-w' \gg \overline{w}$, inducing *subgrid* saturation, condensation, heat and water exchanges and transfers, modification of the radiation budget,... which cannot be ignored.
 - The convective circulation can extend over several grid-boxes, as far as the Rossby radius of deformation.

 \Rightarrow Non-local closure, binding them with the resolved dynamics.

 The small eddies — mostly isotropic, local, down-gradient handled by a turbulent diffusion scheme

(e.g. gradient-transport or prognostic TKE).

- Subgrid variability included in the *resolved* condensation scheme,

e.g. through a pdf (Smith).

- Larger eddies (Deep convection) require a specific scheme :
 - circulation can climb up local gradients;
 - $-w' \gg \overline{w}$, inducing *subgrid* saturation, condensation, heat and water exchanges and transfers, modification of the radiation budget,... which cannot be ignored.
 - The convective circulation can extend over several grid-boxes, as far as the Rossby radius of deformation.

 \Rightarrow Non-local closure, binding them with the resolved dynamics.

(1) (at least) two condensation schemes which must be combined...

 The small eddies — mostly isotropic, local, down-gradient handled by a turbulent diffusion scheme

(e.g. gradient-transport or prognostic TKE).

- Subgrid variability included in the *resolved* condensation scheme,

e.g. through a pdf (Smith).

- Larger eddies (Deep convection) require a specific scheme :
 - circulation can climb up local gradients;
 - $-w' \gg \overline{w}$, inducing *subgrid* saturation, condensation, heat and water exchanges and transfers, modification of the radiation budget,... which cannot be ignored.
 - The convective circulation can extend over several grid-boxes, as far as the Rossby radius of deformation.

 \Rightarrow Non-local closure, binding them with the resolved dynamics.

- (1) (at least) two condensation schemes which must be combined...
- (2) can we separate a "larger scale forcing" from a "convective response"?

 The small eddies — mostly isotropic, local, down-gradient handled by a turbulent diffusion scheme

(e.g. gradient-transport or prognostic TKE).

- Subgrid variability included in the *resolved* condensation scheme,

e.g. through a pdf (Smith).

- Larger eddies (Deep convection) require a specific scheme :
 - circulation can climb up local gradients;
 - $-w' \gg \overline{w}$, inducing *subgrid* saturation, condensation, heat and water exchanges and transfers, modification of the radiation budget,... which cannot be ignored.
 - The convective circulation can extend over several grid-boxes, as far as the Rossby radius of deformation.

 \Rightarrow Non-local closure, binding them with the resolved dynamics.

- (1) (at least) two condensation schemes which must be combined...
- (2) can we separate a "larger scale forcing" from a "convective response"?

Local saturation is correlated with the local vertical motion.

Local saturation is correlated with the local vertical motion. resolved ...and condensation more and more affected ω ω by deep convection $\overline{\omega}$ with increasing $\overline{\omega}$ resolution $\sigma_{\rm m}$ ω

 \Rightarrow deep convection parametrizaton should gradually decrease its contribution...

 \Rightarrow deep convection parametrizaton should gradually decrease its contribution...

...and at 2km : $\omega_u \rightarrow \overline{\omega}...$

Krueger (2001) : 29-day 2-D CRM simulation, $\triangle x=2$ km.

L. Gerard, 28 March 2007

Krueger (2001) : 29-day 2-D CRM simulation, $\triangle x=2$ km.

- Assumes that the 2-km resolution resolves all convective cells.
- 2D-model \Rightarrow take the square of the linear fractions

Krueger (2001) : 29-day 2-D CRM simulation, $\triangle x=2$ km.

Assumes that the 2-km resolution resolves all convective cells.

- 2D-model \Rightarrow take the square of the linear fractions

Krueger (2001) : 29-day 2-D CRM simulation, $\triangle x=2$ km.

- Assumes that the 2-km resolution resolves all convective cells.
- 2D-model \Rightarrow take the square of the linear fractions

For instance : α =0.04 at $\triangle x$ =32 km, 0.25 at 8km, 0.5 at 4km.

The parametrization problem

grid column

L. Gerard, 28 March 2007

The parametrization problem

top and lower BC

L. Gerard, 28 March 2007

model variables

Forcings

Dynamics

 $\Rightarrow Quasi \ Equilibrium \ {\it Arakawa-Schubert, 1974}$

Dynamics

Dynamics

RM

Convective circulation extends gradually to the Rossby radius of deformation

"Large-scale" \neq "Non convective"

causality discussion

Dynamics

"Large-scale" and "Moist-convective" overlap (Mapes 1997)

Dynamics

True scale separation (Mapes 1997)

Moist-dry separation (Mapes 1997)

 Deep convection is more and more resolved : the resolved vertical velocity increases when decreasing the grid-box length.

 Deep convection is more and more resolved : the resolved vertical velocity increases when decreasing the grid-box length.

 $\Rightarrow\,$ so does the resolved saturation and condensation !

 Deep convection is more and more resolved : the resolved vertical velocity increases when decreasing the grid-box length.

- $\Rightarrow\,$ so does the resolved saturation and condensation !
- Time step becomes shorter prognostic approach required.

 Deep convection is more and more resolved : the resolved vertical velocity increases when decreasing the grid-box length.

- $\Rightarrow\,$ so does the resolved saturation and condensation !
- Time step becomes shorter prognostic approach required.
- Interactions between concurrent parametrizations must be handled properly.

- Cloud interacts with all other processes \implies towards integrated physics

(Arakawa 2004)

- − Cloud interacts with all other processes ⇒ towards integrated physics (Arakawa 2004)
- At least at the same time step :
 - effect of turbulence / PBL
 - All transports : turbulent, convective
 - integrate together all cloud and precipitation processes

- − Cloud interacts with all other processes ⇒ towards integrated physics (Arakawa 2004)
- At least at the same time step :
 - effect of turbulence / PBL
 - All transports : turbulent, convective
 - integrate together all cloud and precipitation processes
- From one time step to the next :
 - radiation/cloud
 - dynamical effects on main wind
 - feedback hydrology/ocean/land on turbulence/radiation/cloud

- Cloud interacts with all other processes \implies towards integrated physics

(Arakawa 2004)

- At least at the same time step :
 - effect of turbulence / PBL
 - All transports : turbulent, convective
 - integrate together all cloud and precipitation processes
- From one time step to the next :
 - radiation/cloud
 - dynamical effects on main wind
 - feedback hydrology/ocean/land on turbulence/radiation/cloud

- Skip the grey zone : Arome model < 2km.

- Skip the grey zone : Arome model < 2km.
- Use the diagnostic convective parametrization where no longer valid, and be aware of the interpretation : UKMO.

- Skip the grey zone : Arome model < 2km.
- Use the diagnostic convective parametrization where no longer valid, and be aware of the interpretation : UKMO.
- Grabowski(2001) : embedded 2-D Cloud-Scale Resolving Model : useful for climate, less for operational forecast.

 Integrated cloud and precipitation package, coherent treatment of transports : essential step towards unified physics.

- Integrated cloud and precipitation package, coherent treatment of transports : essential step towards unified physics.
- Scientific : Advance in understanding the problems.

- Integrated cloud and precipitation package, coherent treatment of transports : essential step towards unified physics.
- Scientific : Advance in understanding the problems.
- Complete viability of the grey zone resolutions : gain of computing time or power, of storage, yields more forecast opportunities.

- Integrated cloud and precipitation package, coherent treatment of transports : essential step towards unified physics.
- Scientific : Advance in understanding the problems.
- Complete viability of the grey zone resolutions : gain of computing time or power, of storage, yields more forecast opportunities.
- Improvement at all resolutions.

- Integrated cloud and precipitation package, coherent treatment of transports : essential step towards unified physics.
- Scientific : Advance in understanding the problems.
- Complete viability of the grey zone resolutions : gain of computing time or power, of storage, yields more forecast opportunities.
- Improvement at all resolutions.
- Coupling, data assimilation.

- Integrated cloud and precipitation package, coherent treatment of transports : essential step towards unified physics.
- Scientific : Advance in understanding the problems.
- Complete viability of the grey zone resolutions : gain of computing time or power, of storage, yields more forecast opportunities.
- Improvement at all resolutions.
- Coupling, data assimilation.
- Possibility of a variable mesh size keeping a single compatible physics.

 $\overline{q_{t9}} = \overline{q_{v9}} + \overline{q_{\ell9}} + \overline{q_{i9}}$

$$\overline{q_{t9}} = \overline{q_{v9}} + \overline{q_{\ell9}} + \overline{q_{i9}}$$

$$\Downarrow$$

$$q_{sat}(\overline{T_9}) \longrightarrow \boxed{\text{resolved condensation}} \rightarrow \mathcal{P}_{st}$$

Deep Convection

$$\overline{q_{t9}} = \overline{q_{v9}} + \overline{q_{\ell9}} + \overline{q_{i9}}$$

$$\Downarrow$$

$$q_{\text{sat}}(\overline{T_9}) \longrightarrow \boxed{\text{resolved condensation}} \rightarrow \mathcal{P}_{\text{st}}$$

Deep Convection
$$| \rightarrow \mathcal{P}_{cu}$$

modulate?
$$\Downarrow$$

 $MOCON \longrightarrow Deep Convection \rightarrow \mathcal{P}_{cu}$

Finding the fair share out of the waterhole

Finding the fair share out of the waterhole

$$\overline{q_{t9}} = \overline{q_{v9}} + \overline{q_{\ell9}} + \overline{q_{i9}}$$

$$\downarrow$$

$$q_{sat}(\overline{T_9}) \longrightarrow \overrightarrow{\text{resolved condensation}} \longrightarrow F_{vi}^0, F_{v\ell}^0$$

$$\overline{q_{v0}}, \overline{q_{\ell0}}, \overline{q_{i0}}, \overline{T_0} \quad \text{and} \quad f_{stra}$$

$$\downarrow$$

$$MOCON \longrightarrow \overrightarrow{\text{Deep Convection}} \longrightarrow F_{vi}^1, F_{v\ell}^1, J_v^{cu}, J_i^{cu}, J_\ell^{cu}$$

$$\overline{q_{v1}}, \overline{q_{\ell1}}, \overline{q_{i1}}, \overline{T_1} \quad \text{and} \quad f = \max(f_{stra}, \sigma_D)$$

$$\downarrow$$

$$\overrightarrow{\text{Autoconversion}}$$

Finding the fair share out of the waterhole

Cascade General layout

Cascade General layout

RMI

Thunderstorms on Saturday 10 September 2005 Accumulated rain 17 to 18h utc

15 18 21 24 27 30 \square 5 m/s 0.37 mean

cA7q:2005-09-10 12:00+06

t+0006 PREC EAU.CON+EAU.GEC+NEI.CON+NEI.GEC, 5 to 6

7.00km MaC full package

Wideumont Radar

Intense small cells produce limited amounts when averaged over a 50 km^2 grid-box area RMI - Belgium

30

27

24

21

18

15

12

9

6

3

cA7q : 2005-09-10 12:00+06

nA7q : 2005-09-10 12:00+06

7.00km MaC full package

7.00km Resolved scheme alone

updraughts forced to wider than realistic scale (Deng and Stauffer 2006)

cA4q : 2005-09-10 12:00+06

nA4q : 2005-09-10 12:00+06

4.00km MaC full package

4.00km Resolved scheme alone

updraughts forced to wider than realistic scale (Deng and Stauffer 2006)

L. Gerard, 28 March 2007

nA2q : 2005-09-10 12:00+06

cA2q : 2005-09-10 12:00+06

2.18km MaC full package

2.18km Resolved scheme alone

visible convergence, not yet complete...

L. Gerard, 28 March 2007

cA2q : 2005-09-10 12:00+06

2.18km Subgrid part

2.18km Resolved part

... subgrid scheme cares for non hydrostatic effects in the frame of the hydrostatic dynamics

