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Horizontal diffusion

Model equation for ~v:

d~v

dt
+ 2~Ω × ~v

︸ ︷︷ ︸

coriolis

+ RT∇ ln p + ∇Φ
︸ ︷︷ ︸

pressure force

= ~F~v + ~S~v + ~K~v

with:
~F~v representing diabatic processes
~S~v representing sources/sinks
~K~v representing horizontal diffusion
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Horizontal diffusion in atmospheric models

Formal mathematical reason
avoid the hyperbolic kind of model equations

⇒ sufficient to be represented by K∇X

⇒ numerical schemes are diffusive, no special need
for additional extra diffusion

Parameterization of physical processes
horizontal turbulence and molecular exchange;

with ∆x ≈ 9.5 km the impact to u, v is of 10−7 -10−3 m/s

⇒ has to be represented by a non-linear operator
being function of the flow field
⇒ generally only conditionally stable
⇒ for scales » o(1km) typically neglected
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Horizontal diffusion in atmospheric models

Numerical filter
removing the accumulated energy from the end of a model

resolved spectrum and filtration of the numerical noise;

with ∆x ≈ 9.5 km the impact to u, v is of 10−2 -100 m/s
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Horizontal diffusion in atmospheric models

Numerical filter
removing the accumulated energy from the end of a model

resolved spectrum and filtration of the numerical noise;

with ∆x ≈ 9.5 km the impact to u, v is of 10−2 -100 m/s

⇒ linear operator of K∇rX kind is sufficient
(seen through scores or climate simulations)

Allows absolutely stable implicit formulation

Algorithmically efficient

Straightforward tuning through K and r

Almost exclusively used in atmospheric models
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Horizontal diffusion in ALADIN

Spectral diffusion

linear diffusion K = const.

by default r = 4
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Horizontal diffusion in ALADIN

Spectral diffusion

linear diffusion K = const.

by default r = 4

SLHD (since 2003)

grid point space scheme

non-linear scheme ≈ K(d)∇rX

∇r is represented by sL interpolators (r ≈ 2-4)
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SLHD design
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SLHD design -κ

κ =
f(d0)∆t

1 + f(d0)∆t
.
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SLHD design -ID

Linear vs. homogeneous interpolation
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SLHD - implementation specificity

1 10 100

wave number

1e−03

1e−02

1e−01

1e+00

1e+01

1e+02

e
n
e
rg

y

Kinetic Energy Spectra

the lowest model level; adiab; no DF; 3h

control

I_A

I_D

rescaled orography

ALARO Training Course, Radostovice, March 2007 – p. 9



SLHD - implementation specificity

1 10 100

wave number

1e−03

1e−02

1e−01

1e+00

1e+01

1e+02

e
n
e
rg

y

Kinetic Energy Spectra

the lowest model level; adiab; no DF; 3h

control

I_A

I_D

rescaled orography

X+
F

=

(

1 −
∆t

2
L

)
−1








(

1 +
∆t

2
L

)

X−

O
+ ∆tF−

O
+

∆t

2
N ∗

O

︸ ︷︷ ︸

I

+ ∆t

2
N ∗

F








ALARO Training Course, Radostovice, March 2007 – p. 9



SLHD - ALADIN implementation
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SLHD tuning

Ideal tuning
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SLHD tuning

Ideal tuning

Compromise tuning
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SLHD tuning

Ideal tuning

Compromise tuning

Spectral diffusion
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SLHD properties

RMSE evolution of the MSL pressure
Parallel test, 19 days
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SLHD properties

Lagrangian cubic interpolation
⇒ Natural 4 points cubic spline

2001/07/20 00UTCBase
2001/07/21 00UTCValid

mma103@voodoo Fri May 28 13:39:34 2004 [FPslhd+0024 FPoper+0024]

2001/07/20 00UTCBase
2001/07/21 00UTCValid

mma103@voodoo Fri May 28 13:41:03 2004 [FPslhd.spline+0024 FPoper+0024]
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New interpolators for SL

Dimensionless damping rate
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SLHD on moisture

Total cloudiness forecast for December 15th, 2004

linear diffusion vs. SLHD

ALARO Training Course, Radostovice, March 2007 – p. 15



Adriatic storm I. - June 21st, 2001

ALADIN/LACE analyzis
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Adriatic storm I. - June 21st, 2001

ALADIN/LACE operational forecast for 24 hours
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Adriatic storm I. - June 21st, 2001

ALADIN/LACE forecast for 24 hours with SLHD
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Adriatic storm I. - June 21st, 2001

Operational forecast with lin. diffusion
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Adriatic storm I. - June 21st, 2001

SLHD simulation
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Adriatic storm II - May 6th, 2004
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Slovakia - May 17th, 2006

ALADIN/Slovakia forecast for 36 hours
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Slovakia - May 17th, 2006

ALADIN/Slovakia forecast for 39 hours
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Squall line simulated by AROME

00 +15 UTC May 22nd, 2006

Radar vs. AROME with spectral diffusion
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Squall line simulated by AROME

00 +15 UTC May 22nd, 2006

Radar vs. AROME with SLHD
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SLHD pros

More realistic (non-linear, wind triggered)
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SLHD pros

More realistic (non-linear, wind triggered)

Local and 3D character

Targeted security

Applicable to any advected field

No additional time-step constraints

Turns damping side effect of s-L advection to useful tool

Offers elegant solution for BBC condition in NH
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SLHD cons

Special care to control orography triggered noise
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SLHD cons

Special care to control orography triggered noise

Needs several time-steps to act adequately

Limited (and complicated) tuning

Conservative properties are worsened

Additional cost
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Horizontal diffusion linear vs. non-linear
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Horizontal diffusion linear vs. non-linear

1. For most of the cases linear and non-linear diffusions
perform comparably.
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Horizontal diffusion linear vs. non-linear

1. For most of the cases linear and non-linear diffusions
perform comparably.

2. There is a group of cases for which a linear diffusion is
not always sufficient.

3. Such situations are typically related to extreme weather
events.

Realistic simulation of severe weather events needs
something better than linear diffusion.
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