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A) What is the aim of the method? 

 

• Starting from the usual ‘static’ exchange coefficients obtained by the ‘Louis’ 
technique within the ACCOEFK routine, we are searching a method of 

evolution of a prognostic TKE E which gives in return an equilibrium position 

corresponding to the said coefficients but which also allows for space-

consistent time variations around it. The whole procedure symbolically reads: 
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In the above, the tilded values correspond to the static part of the computation 

and the non-tilded ones correspond to the prognostic aspects. The final Km (for 

momentum) and Kh (for energy) vertical exchange coefficients will be those 

used for the ‘classical’ part of the vertical diffusion computations; for that they 

simply replace their tilded equivalents, all other things unchanged. Kn 

represents the vertical exchange coefficients at neutrality, while K* is an 

equivalent vertical exchange coefficient chosen in such a way that the 

relationship between itself and E is as independent as possible of the Km/Kn 

(stability dependent) ratio. KE is the auto-diffusion vertical coefficient for the 

TKE and ττττεεεε its dissipation time scale (ratio E/εεεε of the TKE to its own 
dissipation rate). 

 

• This rather simple algorithm (where the third line of course uses the inverse 
operator of that of the first line) will allow to keep results close to that of the 

current well tuned scheme, while introducing a prognostic component for the 

TKE (advective + diffusive in the horizontal [SLHD] + auto-diffusive in the 

vertical). This in fact allows to treat three basic problems in a simplified but 

still hopefully realistic environment: 

i. The time stability of the TKE prognostic algorithm at long time steps; 

ii. The vertical staggering problem between E and the various K values; 

iii. The anti-fibrillation properties of this pseudo-TKE scheme. 

 

 

B) Two ‘arbitrary’ choices for keeping simplicity 

 

• For treating all aspects of static stability, we shall simply write: 
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Rl will be defined later (in Section ‘E’). Let us assume for the time being that it 

is equal to one (which indeed happens in the PBL where most of the TKE 

exists). 

 

 If γγγγ is zero, one computes E as if the atmosphere was neutral and the influence 
of the stability just comes afterwards from the ‘static’ (tilded) ratios. This 

solution is stable for E but decouples its computation from the (implicit) 

buoyancy term. If γγγγ is one, one captures the full spirit of the proposal but the 
assumption that the stability dependency is everywhere the same is erroneous 

and leads to some chaotic behaviour for E. The use of some intermediate value 

for γγγγ  allows a good compromise (see below). Once this is done, the problem is 
reduced to the one for momentum and TKE at an intermediated state between 

neutrality and the full stability-dependent computation of the ‘static’ K values. 

 

• In this special case, for going from the full TKE formalism to the one 
corresponding to the ‘static’ computations, we use the method proposed by 

Redelsperger, Mahé and Carlotti (2001) [thereafter RMC01] for the link 

between TKE and surface similarity laws. We shall simply arbitrarily extend it 

to other cases than l=κκκκz for z=>0 (with κκκκ the von-Karman constant). In such a 
case, the choice of γγγγ  is in fact related to approximations we must do for the so-
called φφφφL & ψψψψL functions of RMC01. If we consider them as equal to one-

another γγγγ is one, while if we say that their ratio is equal to Km/Kn γγγγ is zero. 
Following some additional assumptions (detailed in Annex 1), we elected to 

have a single γγγγ=0.5 value for all the range of stabilities, looking mostly at the 
problem from the point of view of the near neutral transition regimes. 

 

 

C) The basic equations for momentum and TKE (using the additional notations of 

RMC01) 
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Here, αααα, CK and Cεεεε are ‘universal’ constants, LK and Lεεεε are the related mixing 

lengths in the sense of a full TKE scheme, not to be confused with the Prandtl-

type mixing length for momentum lm (which corresponds to the one previously 

used in the computation of the tilded K values). Indeed, RMC01 show that the 

two types of mixing lengths are proportional to each other near the surface, 

where one may also assume that LK=Lεεεε. Beware that LK/εεεε should not be 

confused with the Monin-Obukhov length scale (a completely different concept 

this time) which will be noted LMO. Given the first of our two simplifying 

assumptions of Section ‘B’, the lh equivalent of lm (for energy) never appears in 

the pseudo-TKE algorithm (but it is of course used for the computation of the 

tilded K values). 

 

In the first of the above equations, the last term represents a simple version of 

the balance between shear plus buoyancy production/destruction on the one 

hand and dissipative effects on the other hand. As already mentioned, the 

Newtonian time scale is chosen to be the one of the dissipation in a full TKE 

formalism. 

 

It should be mentioned at this point that the method described here is in 

principle able to mimic any full TKE scheme, but with the advantage of a well 

defined and stability oriented discretisation. For that we need only two things: 

an independent definition of LK and/or Lεεεε as well as a computation of the last 

term of the first of the above equations so that its tilded part corresponds to the 

shear plus buoyancy production/destruction. We shall not come back in this 

note on this property, but there is here an obvious area of further research as 

well as a basis for clean comparisons of competing methods. 

 

 

D) The application of the second ‘arbitrary’ choice 

 

We have (RMC01): 

εε καα
κ

α
CA

C
A

K

K == &
1

 

and (RMC01 again) we want AK=Aεεεε. Then, introducing νννν with 
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we finally get the very simple set of equations: 
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E) Time and space discretisation algorithm 

 

The last two equations are written here in two shapes. This is done in order to 

symbolically indicate that there were indeed two possible ways of solving the time-

loop of the algorithm. It was sure that we should need the new value of E to compute 

K*, but whether we should (before that) use the ‘E’ information of the past time-step 

or the ‘K-tilded’ one of the present time-step for computing the diffusion and 

Newtonian-relaxation coefficients of the evolution equation for E remained an open 

question. In fact one could even consider having an iterative (predictor-corrector) step 

for this aspect with a provisional (predictor) new value of E also used for getting KE 

and 1/ττττεεεε  in the corrector part. The three issues were studied both separately and 

together and the outcome was unambiguous: an iterative procedure is unnecessary 

(and even slightly detrimental) and the use of the past E values leads to better stability 

for both auto-diffusion and Newtonian-relaxation aspects. Hence, only at the first time 

step is the second version of the above-mentioned equations needed (since one then 

does not have the guarantee of getting a non-zero historical value of E). Otherwise, 

one systematically uses the first version of the said equations. 

 

The anti-fibrillation treatment (Bénard, Marki, Neytchev and Prtenjak, 2000) may (our 

first implementation choice) or may not be associated to the ACCOEFK/ACDIFUS 

computations for the ‘usual’ prognostic variables, a fact that allows a transparent 

evaluation of its impact for the diffusive part of a prognostic turbulent scheme, 

something otherwise quasi-impossible to obtain, to our knowledge. Of course this 

application involves an approximation since the coefficients are computed for the 

tilded values and applied together with the non-tilded coefficients, but it is expected 

that this slight discrepancy will be of little impact compared to the yes/no choice about 

the anti-fibrillation procedure itself. 

 

Additionally, there is the question whether the (slightly approximated, see above) anti-

fibrillation treatment should also be applied to the auto-diffusion process for E, when 

indeed activated for other variables. The answer is difficult to assess a priori since the 

Richardson number is not directly dependent on KE but remains related to it (provided 

γγγγ is non zero, see above), and this question thus deserves some empirical testing. As 
first trial we elected to have an amplifying factor (space and time-dependent) ββββ’ for KE 

equal to the γγγγ power of the one for the momentum diffusion process. 
 



Even if it is not strictly speaking a fibrillation problem, there is also the risk of a stiff 

behaviour for the Newtonian-relaxation part of the prognostic equation for E. But we 

are here in a textbook example of the analysis by Kalnay and Kanamitsu (1988) with 

the P exponent equal to 0.5 (since the inverse Newtonian time scale is proportional to 

the square root of the TKE). Hence using an over-implicitness factor ββββ=1.5 
everywhere at each time step gives the closest possible solution to the fully implicit 

scheme, without the complexity of the change of variables of Brinkop and Roeckner 

(1995). 

 

A staggering problem apparently comes from the KE/* and lm presence on half levels 

while E is needed on full levels (for instance in order to be advected like all other 

prognostic variables). However the problem is symmetric: a (non-advecting) shifted E 

on half levels would see its relaxation towards its target values becoming 

straightforward, but the vertical diffusion of this quantity would loose its direct 

character (one would probably need to vertically interpolate diffusion coefficients and 

to invent a special treatment at the surface). On the contrary, keeping E on full-levels 

means: (a) a simple diffusion process alike that for other prognostic variables but (b) 

the need to get the relaxation for a given layer as the weighted average of two 

relaxations happening on the bounding half-levels (which is fortunately compatible 

with the use of a uniform over-implicitness ββββ factor, see above). This obviously means 
a three-level stencil in the vertical (the E values on the half-levels must also be 

interpolated -and this gives the 1/ττττεεεε value where needed-) for the matrix of the implicit 

operator. But the latter is fortunately alike the one of the diffusion operator (except 

that the signs for the off-diagonal elements are opposite). Furthermore, using (like we 

elected to do) the same choice (past time step E or tilded K –only for the first time step 

in the latter case-) for both processes, the said coefficients are proportional to each 

other (by a factor related to (ααααlm/∆∆∆∆z)²) and one can thus readily verify that the 
combined matrix is diagonal-dominant and that its solution is linearly stable. 

 

However the staggered Newtonian-relaxation process then possesses a potentially 

oscillating mode while the diffusion process does not. It was thus found interesting to 

make sure that the latter is always dominant in term of coefficients (keeping in mind 

for instance that E may go to zero while K* cannot). This makes it necessary to impose 

something proportional to (∆∆∆∆z/αααα) as a minimum value for lm, this ensuring that the off-
diagonal element of the implicit matrix are negative or zero (the computations are 

detailed in Annex 2). Indeed such a choice was shown to definitely further stabilise the 

numerical behaviour of the scheme. However the change from l’m (the value used in 

ACCOEFK) to the above-defined bounded lm value does create an inconsistency 

within the whole scheme. Noting (i) that the inconsistency primarily concerns the 

‘tilded’ relation between the exchange coefficients and the equilibrium position of the 

TKE and (ii) that K* (except at the first time step) is only used for computing this 

equilibrium position, it is easy to solve the problem through the use of the Rl factor 

which becomes lm/l’m whenever this quantity is bigger than one. Indeed this solution 

keeps the ‘targets’ for Km and Kh unchanged and leads to reasonable values of E when 

the lm stabilising enhancement is applied (otherwise they become too small). 

 

For all the above reasons it was found that a direct staggering operator with E on full-

levels is totally compatible with the spirit of the ‘pseudo-TKE’ scheme and does not 

show any sign of worrying numerical behaviour, even at long time-steps. In principle 



this should remain true when extending the scope of the method like hinted at in the 

last paragraph of Section ‘C’ above. 

 

 

F) Numerical values 

 

Measurements seem to indicate a value of νννν ≈≈≈≈ 0.52 for the first tuning constant of the 
scheme, if indeed the hypotheses and simplifications of Annex 1 hold (this meaning a 

still unique value for νννν). Furthermore, following the computations of Annex 2, this 
0.52 value leads to LK/εεεε≈≈≈≈∆∆∆∆z when the limitation on lm is applied for a regular vertical 
discretisation and with ββββ’=1. The hypothesis of a minimum value ∆∆∆∆z for LK/εεεε is 

something rather common in full TKE schemes, something that creates another bridge 

between both types of formulation. 

 

As shown in Annex 1, the study of the φφφφm, φφφφL and ψψψψL expressions of RMC01 suggest 

that γγγγ = 0.5 is a justified choice for the second tuning constant of the scheme. 



Annex 1 

 

Stability dependency of the tuning of pseudo-TKE 

 

 

Warnings: (i) the ensuing development does not aim at fitting the graphical expressions 

shown by RMC01, since the latter are based on MO functions quite differing from those used 

in the derivation of the Louis-type functions of ACCOEFK; (ii) the two central hypotheses 

below are however a kind of bridge between both formalisms, even if only around neutrality. 

 

We study now the problem of the stability dependency of the basic equations of pseudo-TKE. 

If one refers to RMC01, two of them can be written in all generality: 
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If we decide that lm is not to be dealt with here (for reasons linked to the topic of Annex 2), 

still in all generality, the idea of a change of variables can be applied to [K*,νννν*] with: 
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Arrived there, and reintroducing the third basic equation, we get (in the time-stepping mode 

used for all time steps except the first one), and indeed without any need to touch lm: 
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Now we shall write (still in the notations of RMC01) φφφφEφφφφm²=g and make the two hypotheses 
(strictly valid only around neutrality but acceptable elsewhere) fφφφφm=1 & φφφφm²=Kn/Km. 

 

With this and the RMC01 developed expressions for ΦΦΦΦL and ΨΨΨΨL, one gets: 
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If we follow RMC01: (a) in the stable case g=1 so we do not need to make νννν a locally 
dependent parameter; (b) in the unstable case, pushing the above method to its last 

consequences gives: 
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For –z/LMO=1 (quite unstable) we get νννν*≈≈≈≈0.89.νννν and hence we may continue for the time 
being with a constant νννν and address this additional refinement only at a later stage (see 
below). But γγγγ really ought to be 0.5. 
 

All the above development was made with one idea in mind: to get a better justification for 

the introduction of K* and to do it without touching lm. It is interesting that it works so fine (a 

stability independent value for γγγγ and νννν*=νννν  as an excellent approximation), but it is even more 
interesting to notice that things would not be so easy to justify with a [K*,lm*] pairing. This is 

good because we shall indeed need to keep a ‘clean hand’ on lm for two reasons: 

• We want to further experiment with its formulation in a completely independent 
manner, as hinted at in the last paragraph of Section ‘C’ of the main text. 

• As already mentioned, an in depth modification of the role of lm would interfere in a 
quite cumbersome way with the development explained in Annex 2. 

 

Finally, coming back to the above analytical development of νννν*(νννν) (for the unstable case), a 
direct application together with νννν*=νννν in the stable case would be contradicting the Louis type 
computation of tilded K values which has continuity of derivatives across the neutral state. 

The challenge is thus rather to find a formulation that extends the above equation (or any 

good approximation of it) to the whole range of Km/Kn values (our only available measure of 

stability in the pseudo-TKE formalism), without any divergent behaviour either for high 

stability cases. 



Annex 2 

 

Avoidance of a Lorentz-type spurious vertical mode in the solution of the implicit common 

algorithm for auto-diffusion and adjustment processes 

 

 

We want local dominance of the diffusion process with respect to the Newtonian relaxation 

one, with the consequence that the +/- mode of the latter is sufficiently damped by the former. 

In numerical terms this corresponds to avoid positive off-diagonal terms in the matrix. This 

can be fixed by using a MAX(ZLMU,PLMU) rather than PLMU in our computations. The 

limiting value ZLMU can be prepared from purely geometrical considerations since KE and 

1/ττττεεεε are always proportional to each other. 

 

Given the chosen vertical discretisation, the minimum value for lm must be the maximum of 

those obtained for each of the two off-diagonal elements (one for above, one for below, in 

geometrical terms) and this gives, with the usual IFS/ARPEGE/ALADIN notations for the 

vertical discretisation, the following: 
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A rough estimate gives lm(lim)≈≈≈≈∆∆∆∆z/6 which means that the ‘max’ between PLMU and ZLMU 
will not be used in all the part of the vertical where l≈≈≈≈κκκκ.(z+z0), an important fact because this 
is where we do not want to get away from the RMC01 method. Elsewhere we are rather free 

to apply this numerical security provided the inconsistency it might have as consequence is 

avoided through a modified definition of K* (see main text). 

 


