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1. Introduction

For comparison of model with ground observations, it is necessary to diagnose model quan-
tities like temperature and humidity in 2m measurement height. At current ALARO-1 vertical
resolutions the lowest model level is typically about 10m above ground, so the forecast 2m
values must be obtained by interpolation between lowest model level and surface. Interpola-
tion must deal with sharp gradients often observed near the surface, it is therefore based on
Monin-Obukhov similarity theory, supposing suitable shape of stability functions with a free
parameter that can be determined from consistency of sub-grid reconstruction with model val-
ues at the surface and at the lowest full level, respecting prescribed turbulent flux (in the layer
of constant flux). Use of stability functions not having analytic solution of Monin-Obukhov
equations leads to cost expensive iterative numerical computations. In 1988 J.F. Geleyn [1]
proposed simple Monin-Obukhov stability functions, from which it is easy to calculate dry
static energy as a function of the height. However, Geleyn solution in strongly stable con-
ditions suffers from a cold bias, that can be attributed to the oversimplified linear stability
function. In order to remove it, L. Kullmann in 2009 [2] proposed more realistic stability
function motivated by results of Arctic Ocean Experiment [3] and derived a new formula for
vertical dependence of dry static energy. Unfortunately, Kullmann solution turned to be too
warm in strongly stable conditions. At the end of 2014, provisional fix was implemented at
CHMI based on mix of Geleyn and Kullmann solutions. Even if it helped to remove warm
bias of pure Kullmann solution, it suffered from abrupt T2m oscillations in strongly stable
conditions, given by construction of mixing weight. Here we propose a revision of Kullmann
solution that removes the problem cleanly, by consistent application of Geleyn procedure on
suitably chosen stability function.
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2. The interpolation technique

2.1 Monin-Obukhov theory
In this section we follow Geleyn paper[1]. Monin-Obukhov equations are:

∂u

∂z
=

u∗
κ(z + z0D)

ϕD

(z + z0D
L

)
, (2.1)

∂s

∂z
=

s∗
κ(z + z0H)

ϕH

(z + z0H
L

)
, (2.2)

L =
s̃u2∗
gκs∗

, (2.3)

where u is wind, s is dry static energy s = CpT + gz, Cp is specific heat of air at constant
pressure, T is temperature and g = 9.80665 ms−2 is gravitational acceleration, z is height
above surface, L is Monin-Obukhov length, u∗ and s∗ are friction values of velocity and dry
static energy in the layer of constant flux, z0D and z0H are roughness lengths for momentum
(drag) and heat respectively, s̃ is dry static energy at the surface, κ = 0.4 is Von Karman’s
constant and ϕD, ϕH are Monin-Obukhov stability functions for momentum and heat. There
is no analytic solution of these three equations for arbitrary ϕD, ϕH . The following procedure
needs two surface exchange coefficients and their values in neutrality (denotes by subscript N)
relative to the lowest model level zL:

CD =
u2∗

[u(zL)]2
,

CH =
u∗s∗

u(zL)[s(zL)− s̃]
,

CDN =
κ2

ln2
(
zL+z0D
z0D

) ,
CHN =

κ2

ln
(
zL+z0H
z0H

)
ln
(
zL+z0D
z0D

) , (2.4)

where CD is momentum surface exchange coefficient, CH is heat surface exchange coefficient.
For final formulation it is convenient to introduce:

bD =
κ√
CD

=
κ

u∗
u(zL),

bH =
κ
√
CD

CH
=

κ

s∗
[s(zL)− s̃],

bDN =
κ√
CDN

= ln
(zL + z0D

z0D

)
,

bHN =
κ
√
CDN

CHN
= ln

(zL + z0H
z0H

)
.

(2.5)

From now we restrict only to calculation of dry static energy (not momentum). Integrating
eq. (2.2) from 0 to z gives:

s(z)− s̃ =
s∗
κ

[
ln
(z + z0H

z0H

)
−ΨH

(z + z0H
L

)
+ ΨH

(z0H
L

)]
, (2.6)

where

ΨH(ξ) =

∫ ξ

0

1− ϕH(ζ)

ζ
dζ (2.7)
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and for z = 0 it gives s(0) − s̃ = 0, consistently with definition of s̃ as the surface value of s.
Substituting (2.5) into (2.6) we get:

s(z)− s̃ =
s(zL)− s̃

bH

[
ln

(
1 +

z

zL
(ebHN −1)

)
−ΨH

(
z

L
+

zL
L(ebHN − 1)

)
+ ΨH

(
zL

L(ebHN − 1)

)]
(2.8)

2.2 Interpolation formula for conservative variables

Geleyn solution (1988)

In paper [1] following stability function and its integral was used for stable case:1

ϕH(ξ) = 1 + αGξ, ΨH(ξ) = −αGξ, (2.9)

where αG is a free parameter, to be determined from consistency requirements at lowest model
level. Linear stability function (2.9) fits experimental data well in weakly stable conditions
when ξ < 1. Such fitting delivers value αG ∼ 5 [4], but below αG will be determined from
consistency requirements. Substituting (2.9) into (2.8) gives:

s(z)− s̃ =
s(zL)− s̃

bH

[
ln
(

1 +
z

zL
(ebHN − 1)

)
+ αG

z

L

]
. (2.10)

Putting z = zL in (2.10) gives for αG this condition:

αG =
L

zL
(bH − bHN). (2.11)

Finally, using αG in (2.10) gives Geleyn formula for vertical dependence of dry static energy:

s(z)− s̃ =
s(zL)− s̃

bH

[
ln
(

1 +
z

zL
(ebHN − 1)

)
− z

zL
(bHN − bH)

]
. (2.12)

It should be noted that formula (2.12) doesn’t contain Monin-Obukhov length L.

Kullmann solution (2009)

Interpolation (2.12) suffers from cold bias in strongly stable conditions observed in winter
months. It can be attributed to the fact that for strong stability (small L), argument ξ becomes
much larger than one and Geleyn formula is applied beyond its validity range. L. Kullmann
attempted to remove this problem by using more realistic non-linear stability function for heat,
fitting well experimental data [3] in strongly stable conditions:

ϕH(ξ) = 1 + aK
αKξ

1 + αKξ
, ΨH(ξ) = −aK ln(1 + αKξ), (2.13)

1 Let us note that ϕH(ξ) = 1 implies ΨH(ξ) = 0 and s(z) − s̃ = s(zL)−s̃
bHN

[
ln
(

1 + z
zL

(ebHN − 1)
)]

. When
consistency condition at the lowest model level s(zL) is required, then bH = bHN which corresponds to neutral
temperature profile.
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where aK is recommended to be ≈ 5 for consistency with experiments[3], but Kullmann set this
as tuning parameter and introduced a new elimination parameter αK as a factor multiplying
argument ξ. Elimination parameter αK is determined from condition at lowest model level zL:

αK(aK) = L
exp

(
bH−bHN

aK

)
− 1

zL + z0H

(
1− exp

(
bH−bHN

aK

)) . (2.14)

In this case, vertical depedence of dry static energy is:

s(z)− s̃ =
s(zL)− s̃

bH

[
ln
(

1 +
z

zL
(ebHN − 1)

)
+ aK ln

(
1 +

z

zL

(
e

bH−bHN
aK − 1

))]
, (2.15)

where limit aK →∞ gives back Geleyn formula (2.12).

Mix of Geleyn and Kullmann solutions

At the end of 2014, provisional fix was implemented at CHMI to remove warm bias of pure
Kullmann solution. It combines Geleyn and Kullmann solutions, with mixing weight being
based on stability parameter σ:

σ =


0 bH − bHN ≤ 400,
bH−bHN−400

400
400 < bH − bHN ≤ 800,

1 800 < bH − bHN .
(2.16)

In order to be smooth, mixing weight is calculated as:

w = 3σ2 − 2σ3, (2.17)

where in the limit of strong stability w = 1 and near neutrality w = 0. Both equations for dry
static energy (2.12) and (2.15) can be written as:

s(z)− s̃ = W (z)(s(zL)− s̃), (2.18)

where W (z) is interpolation weight (the same weight is used also for interpolation of specific
humidity q). Finally the interpolation weight of mixed solution WGK(z) is calculated:

WGK(z) = w ·WG(z) + (1− w) ·WK(z), (2.19)

whereWG(z) is interpolation weight for dry static energy of pure Geleyn solution (2.12),WK(z)
is interpolation weight for dry static energy of pure Kullmann solution (2.15). In the limit of
strong stability WGK(z) = WG(z) which seems opposite as was intended. In any case, adding
certain proportion of colder Geleyn solution reduces warm bias of Kullmann solution.

2.3 Obtaining temperature and relative humidity

Monin-Obukhov theory was applied for conservative variables: dry static energy and specific
humidity. From their dependence on the height z we can calculate 2m temperature, where
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dependence of specific heat Cp on specific humidity q is taken into account. Temperature as a
function of height is:

T (z) =
C̃pT̃ +W (z)(CpLTL + zL − C̃pT̃ )

Cp(z)
, (2.20)

where C̃p is specific heat of air at the surface, T̃ is surface temperature, CpL is the specific heat
of air at the lowest model level and Cp(z) is specific heat of air at height z:

Cp(z) = Cpd + (Cpv − Cpd)q(z), (2.21)

where Cpd is specific heat of dry air, Cpv is specific heat of water vapor and q(z) is specific
humidity:

q(z) = q̃ +W (z)(qL − q̃), (2.22)

where qL is specific humidity at lowest model level and q̃ is specific humidity at the surface.
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3. New interpolation formula

Due to large variability of difference bH−bHN (0 < bH−bHN . 1000) at night, term e
bH−bHN

ah

in (2.15) oscillates rapidly. In order to avoid the problem, we suggest modified stability function
in a shape:

ϕH(ξ) = 1 + α
ξ

1 + aξ
, ΨH(ξ) = −α

a
ln(1 + aξ), (3.1)

where the main difference between Kullmann stability function (2.13) and modified stability
function (3.1) is that the free parameter α is before fraction, so that it becomes simple multiplier
in integral ΨH . Tuning parameter a is introduced in denominator of stability function ϕh.
Using the same elimination procedure as in section 2.2 we get:

s(z)− s̃ =
s(zL)− s̃

bH

[
ln
(

1 +
z

zL
(ebHN − 1)

)
−

ln
(

1 + z
L
a
+

zL
exp (bHN )−1

)
ln
(

1 + zL
L
a
+

zL
exp (bHN )−1

)(bHN − bH)

]
, (3.2)

where L is expressed by (2.3) and (2.5):

L =
bH

gbD
2

s̃

s(zL)− s̃
u2(zL). (3.3)

For a→ 0 (3.2) reduces to Geleyn formula (2.12).
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4. Results

Mix of Geleyn and Kullmann solutions suffers from 2m temperature oscillations especially
in the calm, clear sky conditions at night, where the strong surface inversion builds up. In
order to investigate the problem, we chose several suitable cases. Results presented in this
section are based on 36 hour run of ALADIN/CHMI, starting on 23th December 2015 at 00
UTC. We produced detailed point diagnostics for Prague, see fig. 4.1. One reason for this
particular choice was the observed 2m temperature lying between values forecast at the surface
and at the lowest model level, guaranteeing their small bias. Other studied cases had even
smoother observed 2m temperature evolution, but they were contaminated by non-negligible
model bias.
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Figure 4.1: Temperature forecast for Prague from 23th December 2015 00UTC to next 36hours. Blue
solid line: Surface temperature. Red solid line: Lowest model level temperature. Green solid line:
Reference T2m (mixed Geleyn and Kullmann solution). Blue dashed line: T2m pure Geleyn solution.
Red dashed line: T2m pure Kullmann solution for aK = 35. Green dashed line: T2m pure Kullmann
solution for aK = 5. Orange, yellow, black solid lines: T2m the new interpolation formula with a = 1,
a = 10 a = 1000 respectively. Black crosses: Observation data for Prague. Purple solid line: Weight
w (2.17).

Most interesting period on fig. 4.1 is from +24 to +32 hour forecast, corresponding to
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window from 1:00 to 9:00 local time. Sunrise on this date and location is around 8:00 local
time. Blue solid line corresponds to surface temperature T̃ and red solid line corresponds to
the lowest model level temperature TL. Black crosses denote 2m observations, one can see that
majority of them indeed lies between TL and T̃ . Evolution of observed 2m temperature in
examined window is smooth, with exception of two jumps visible at +28 and +30 hours. They
might be related to changes in the local wind and will be ignored in further analysis. Early in
the morning the difference TL − T̃ reaches almost +6K, confirming very strong stability near
the surface.

Dashed blue line corresponds to Geleyn solution (2.12). This solution is smooth, but in
the morning it becomes slightly colder than observations. Dashed green line corresponds to
Kullmann solution (2.15) with aK = 5. It suffers from strong warm bias, closely following the
temperature of the lowest model level in the morning. In order to mitigate the problem, value
aK = 35 was used operationally as indicated by the dashed red line. It is however still too
warm, moreover it oscillates by 1–2K. Green solid line corresponds to reference 2m temperature
obtained by mix of Geleyn and Kullmann solutions (the latter with aK = 35). It reduces the
warm bias of pure Kullmann solution, but in the morning it switches abruptly between the two
limiting curves, with oscillations reaching 3–4K. The reason for this behaviour is the shape of
mixing weight w (2.17), denoted by purple solid line (vertical scale on the right).

Finally, our new interpolation formula (3.2) for a = 1, 10 and 1000 is marked orange, yellow
and black respectively. The solution is smooth and without any oscillations. Bias of diagnosed
2m temperature can be tuned by changing parameter a, but such tuning is meaningful only
when TL and T̃ are unbiased. Preliminary recommended setting is a = 1, using lower/higher
value would give colder/warmer 2m temperature.

Figure 4.2 shows maps of 1 hour increment of forecast 2m temperature in the morning.
Left column is the reference mix of Geleyn and Kullmann solutions, right column is the new
formula. Problem with temporal oscillations can be clearly identified in spatial structure of
the increment, visible as a short scale noise. While the new formula gives a noise free field,
reference solution is heavily contaminated.

Figure 4.3 shows vertical temperature profiles between the surface and the lowest model
level given by formulas (2.12), (2.15) and (3.2). When the difference bH − bHN is small then
Geleyn (2.12) and Kullmann (2.15) solutions are similar, see the left panel on fig. 4.3. On
the contrary, when bH − bHN is sufficiently big, Kullmann solution becomes different, with a
very sharp gradient near the surface, see the right panel on fig. 4.3. In the limit of infinite
stability, Kullmann solution becomes vertically constant with a discontinuity at the surface.
Such behaviour is undesirable and it is avoided by our new formula (orange, yellow and black
solid lines for a = 1, a = 10 and a = 1000 respectively). For a > 0, the new solution is
warmer than Geleyn one. Black solid line with a = 1000 represents the limit a→∞, since the
dependence saturates for large a.

More robust verification containing other stations is provided by VERAL scores, see fig.
4.4. They must however be interpreted with care, since the error of diagnosed 2m temperature
does not depend only on interpolation formula, but also on temperature and humidity errors
at the surface and at the lowest model level. Unfortunately, these are not known due to the
lack of corresponding observations. Anyway, 2m temperature bias computed over whole model
domain (left panel) confirms that Geleyn solution (green) is coldest, while reference mixed
solution (black) is nearly unbiased in this case. New solution with a = 1(red) lies in between,
and the new solution with a = 10 (blue) is warmest, having lowest overall bias. During the
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Figure 4.2: T2m difference 29h - 28h of forecast. Left column: Reference mixed solution (2.19). Right
column: New interpolation formula (3.2). Top row: Whole domain. Bottom row: Zoom over Central
Europe.
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Figure 4.3: Vertical temperature profile as function of height z: +25h (left); +31h (right). Blue
dashed line: Geleyn formula (2.12). Red dashed line: Kullmann formula (2.15) for aK = 35. Green
dashed line: Kullmann formula (2.15) for aK = 5. Orange, yellow and black solid lines: New revised
formula (3.2) for a = 1, a = 10 and a = 1000 respectively.

night, average difference between warmest and coldest solutions reaches 1K. Order of curves
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for 2m relative humidity bias is reversed (right panel), reflecting decrease of relative humidity
with increasing temperature when specific humidity remains nearly the same. All the curves
meet at +12 and +36 hours, since in unstable conditions occurring around noon the same
interpolation formula is used in all cases.

2m temperature bias [K] 2m relative humidity bias [%]

forecast lead time [h] forecast lead time [h]

Figure 4.4: STDE, RMSE and BIAS for T2m (left) and RH2m (right) calculated for model run starting
00 UTC 23th December 2015 (forecast length 36h). Black: Reference (mixed Geleyn Kullmann
solution). Green: Pure Geleyn solution. Red and Blue: New interpolation formula a = 1 and a = 10
respectively.
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5. Conclusions

In this work we proposed the new 2m interpolation of the temperature and humidity in
stable conditions. Solution of Geleyn 1988 was smooth but too cold in winter. Solution
of Kullmann 2009 was warmer, but followed lowest model level too closely and sometimes
oscillated. Mixture of the two introduced in TOUCANS reduced T2m bias but oscillated even
more, switching abruptly between the too cold (Geleyn 1988) and too warm (Kullmann 2009)
solutions.

We introduce revised Kullmann 2009 solution, obtained by consistent application of Geleyn
1988 methodology to simplified Gratchev et al. 2007 stability function. New solution is smooth
(non-oscillating), with one tunable parameter a alias ACLS_HS, see Appendix. Setting a = 0
gives back Geleyn 1988 solution (lower T2m limit), a = 1 corresponds to unmodified stability
function (recommended) and a → ∞ gives the upper T2m limit. Interpolation in unstable
conditions is not influenced, here the Geleyn 1988 solution seems satisfactory.
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6. Appendix

We worked in Prague on the local cycle 38t1tr_op4, which contains ALARO-1. Then was
code phasing for c43t1 in Toulouse and was made modset also on cycle cy40t1 (last cycle,
which can be compilable by fortran 90).

Phasing contribution for cy43t1

Content: New 2m interpol. in stab. conditions. Affects only TOUCANS turb.
Contributors: M. Dian, J. Masek
GIT branch: masekj_CY43_t2m
Base cycle: cy43_t1.01
Target cycle: cy43_t1.02
List of modified files (4):

arpifs/module/yomphy1.F90, see fig.6.1.
arpifs/namelist/namphy1.nam.h, see fig.6.2.
arpifs/phys_dmn/actkecls.F90, see fig.6.3.
arpifs/phys_dmn/suphy1.F90, see fig.6.4.

Desc. of modifications:

arpifs/module/yomphy1.F90
Added variables LCLS_HS, ACLS_HS.

arpifs/namelist/namphy1.nam.h
Added variables LCLS_HS, ACLS_HS.

arpifs/phys_dmn/actkecls.F90
New 2m interpolation of temperature and humidity for stable case, kept under key LCLS_HS.
ACLS_HS is free parameter a defined in eq. (3.1). Subroutine is specific for TOUCANS
turbulence.

arpifs/phys_dmn/suphy1.F90
Setting default values of LCLS_HS, ACLS_HS and reading their actual values from the
namelist &NAMPHY1.

Interpolation routine ACTKECLS is called only from TOUCANS, i.e. when there is LCOEFK-
SURF=.T. in namelist &NAMPHY. New interpolation is activated by setting:

&NAMPHY1
LCLS_HS=.T., (default .F.)
ACLS_HS=1., (default, recommended)
/
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Figure 6.1: Modification in arpifs/module/yomphy1.F90. left: reference. right: modified.

Figure 6.2: Modification in arpifs/namelist/namphy1.nam.h. left: reference. right: modified.

Figure 6.3: Modification in arpifs/phys_dmn/actkecls.F90. left: reference. right: modified.
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Figure 6.4: Modification in arpifs/phys_dmn/suphy1.F90. left: reference. right: modified..
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