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Pseudo-prognostic TKE scheme (hereafter pTKE) is an extension of the Louis
type vertical diffusion scheme. pTKE scheme consists of two parts:

1. the static part - the ’static’ computation of turbulent exchange coefficients
(subroutine ACCOEFK)

2. the prognostic part - modifies the ’static’ exchange coefficients with prog-
nostic TKE equation (in ACDIFUS subroutine).

This document describes an alternative to currently used static part in pTKE
scheme. 'New’ approach is based on TKE (Turbulent Kinetic Energy) equation
for TKE at stationary equilibrium.

1 Prognostic part

For better understanding of pTKE scheme [3] [9], we shortly summarize:

1.1 Input/output of prognostic part

Inputs for the prognostic part are:

° f(m,f( o f(n - “static’ exchange coefficients for momentum, potential tem-
perature(also specific moisture) and for momentum at neutrality,
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e [, - Prandtl-type mixing length for momentum and
e TKE(e) -Turbulent Kinetic Energy

Outputs are the modified exchange coefficients, which are used for computa-
tion of turbulent fluxes and the tendency of TKE.

1.2 Prognostic TKE equation

Besides the balance between wind shear and buoyancy production/destruction
terms and the dissipation term enables the prognostic TKE equation also advec-
tion, horizontal diffusion and the vertical auto-diffusion of the TKE.
To use TKE equation we need to link our inputs (similarity laws) with the input
parameters for TKE equation (TKE formalism):

e TKE,
e K p-vertical exchange coefficient for TKE and

e T7.- dissipation time scale.

1.3 Link between similarity laws and TKE formalism

The method proposed by Redelsperger, Mahé and Carlotti(2001) [7] is used to
provide this link. We have:
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where v* = Ck * C. (Ck and C. are constants) and ‘IJL(%) and @L(%) are
stability function in expressions for sub-grid-scale lengths:

Lg = A2®L(9E, dm) (3)
Le = AZ@L(¢E7 ¢m) (4)

where ¢ g,0,, are Monin-Obukhov stability functions.



To make the relations (1) and (2) free from stability functions new variables
were introduced to the scheme - K, and v,:
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Two hypotheses has been made for Monin-Obukhov stability functions: f¢,, = 1
and ¢7, = £=. We get:

v
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K, =+/K,K,, (8)

Uy =

~va0.52 (7

1.4 Link to output

K, is computed from the ’static’ exchange coefficients f(m and f(n. This is
used to estimate parameters for the TKE equation. K, is calculated from the 'new’
TKE, which is given by TKE equation. At this point we need to make the last step
from the K, and K .« exchange coefficients to the 'new’ exchange coefficients K,
and K, (output of pTKE):

Ky,
K,
K
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2 Static part - 'new’ ACCOEFK

First we describe the old’ ACCOEFK:

2.1 ’0ld’ ACCOEFK subroutine

Subroutine ACCOEFK [5] computes ’static’ exchange coefficients and is based
on ’Louis’ technique [8]:
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where F),,(Ri) and F},(Ri) are shaping stability functions:
-stable case:

Fn(Ri) = 1 4+ _2bRi (14)
1+4Ri
1
Fy(Ry) = 15
W) = RV T iR (15)
-unstable case:
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where b,c,d.k are constants and 2, and zy, are roughness lengths for momentum
and potential temperature, respectively.



2.2 ’New’ ACCOEFK subroutine

"New’ ACCOEFK will use TKE equation for TKE at stationary equilibrium
(% = 0) and by using only three terms on the rhs of the TKE equation: wind
shear(I) , buoyancy(Il) production/destruction term and the dissipation term(III)
for estimation of ’static’ exchange coefficients:

0=1(&)+ I1(&)+ I11(é) (18)

where ¢ is TKE at stationary equilibrium. The omitted terms on the rhs of full
TKE equation will be added later in the prognostic part of pTKE.

We will use following expressions for I, II and III from the Cuxart, Bougealt
and Redelsperger(CBR) turbulence scheme [2]:
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where L is the mixing length. We suggest that L/[,,, = const. ¢3(Ri) is stability
function (see [7]):

1
1+ s
F(Ri) = ; (1 — (Cs+ CoRi+ (1= (Cs + Co)Rip2 + 40432']) (23)
Cy = gﬁ (24)
 O4C,
=G (25)

where C'x,Ck,C,,., Cs,Cy,C. are closure constants and Ri is Richardson number,
that will be estimated the same way as in the *old” ACCOEFK.

We can solve (18) analytical. First we substitute v/¢ = X and write (18)) this
way:



: ZZ)X + B(L, @, Ri)X +C(L)X? (26)
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We get 3 solutions:

D D
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where D=-(A+B). First solution is trivial. TKE is a real positive number, so the

term g must be positive or zero. We get :
D
e = rel >=0 (28)

_ (a1 90
o \150,

We use the definition of the (bulk) Richardson number Ri:

ou\> [ov\’ g 2 00 .
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Ri =2 9z (30)
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to eliminate %% in (29). Additionally we use these relations for constants

Csand C,,:
4

= — 31

Cx 15C,, D

Cy = 2 (32)
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We get:

o 10K (1 — RiCs¢5(Ri)) ou\’ L (T 2 (33)
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"Static’ exchange coefficients will be then computed following:

~ AL~ .
Km:m\/é = CxLVeé (34)
Ron= = os(RIVE = CiCicy(Ri)LVE (35)



In neutral case (Ri = 0, p3(Ri = 0) = 1) we get for K,,(Ri = 0) = Ky:

EZ‘)Q n (gjﬂ | (36)
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Relation for L(l,,) is:

Ce \*

Now we can write 'new’ stability functions F;,, and F},, which are functions of
Richardson number only:

Fullt) = i —0) ~ Rox

= /(1 - RiCy0s(Ri)) = \/f(Ri) (40)
Fy(Ri) = f(h(]i;h: 0" Cigzv = C3¢3(Ri)é3\/(1 — RiC3¢3(R1))

= ¢3(Ri)y/ f(Ri) = ¢3(Ri) Frn(RP) (41)

C's and () are the only tuning constant in the computation of F},, and Fj,.

2.3 Corrections for computation of stability functions

We will rewrite ¢3(Ri) for computation following:

¢3(Ri) = f+fC4Ri (42)



We will prove that the term f + CyR: is always positive for Rz < 0. We
suggest that C's > 0 and Cy > 0:

|
J+CiRi = S(1—(Cy+Co)Ri+ V(1= (Cs + Cy)Ri)? +4C4Ri - (43)
+204 Ri)
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We rewrite the term under square root:

(1 —(C3+CyRi)?+4C,Ri = 1—2(Cs+ Cy)Ri+ (Cs + Cy)*Ri*(45)

+4Cy Ri
= 14 2(C5+ Cy)Ri + (C5 + C4)*Ri*(46)
—4CsRi
> (14 (O34 Cy)Ri)? 47)
For Ri < —03104:
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For 0 > Ri > —
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For Ri > 0 exists a risk that the term f + C,Ri could be equal zero, when
f(Ri) < 0. f(Ri) < 0could be also a problem in the computation of the function

F,, =/ f(Ri). We calculate limits for f(Ri):

F(Ri) = 0.5(X +/X2 +4C4Ri) X =1— (Cy+ Cy)Ri (53)
X — o0 for Ri — —oc0  f(Ri) — o0 for Ri — —oco (54)
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X
X — —00 T — —(C5+ Cy) for Ri — o0 (55)

, VX2 +4C,Ri — X
= 0.5(X X244 56
F(RI) = 05(X + /X2 +40.Ri) Yot (56)
. 4Cy Ri
Ri)=0.5 57
S =05 e mi = X ©7
. 2C!
f(Ri) = — (58)
(%) + % - %
. 20, Cy .
= 59
f(RZ>_>2(C’3+O4) (03+C'4)>O for Ri — oo (59)

f(Ri) is always greater then 0.

2.4 Modifications in ACHMT subroutine

The computation of drag coefficients PCD (for wind components) and PCH
(for temperature and humidity) [5] is related to the computation of vertical ex-
change coefficients through the stability functions F;,, and F},:

PCD = PCDN.F, (60)
PCH = ZCDNH.F, (61)

where PCDN and ZCDNH are drag coefficients at neutrality.
We replace the *old’ stability functions with the *new’ stability functions.

2.5 Asymptotic features of stability functions

Two necessary conditions for the asymptotic behavior of stability functions
have to be met for stability functions [4] [6] :

I. an asymptotic value of the sensible heat flux:

N\ 2 N\ 2
Q’w’lmlh\l [(gg) +<gz>

ou\®  [(ov\? o0
when J [(32) + (32) ] = const and EP — 00 (63)

00
—F] ) — 2
5 n(Ri) — const (62)




II.

2.5.1

and convergent critical Richardson flux number Ri; independent with re-
spect to the critical Richardson number when Ri — oc:
0w’ K
Riy = g 7= — = Ri—h — const (64)
Oref w'w'FE + v'w' g K.,
when Ri — oo (65)

’0ld’ stability functions - usage of the critical Richardson number

Asymptotic behavior of ’old’ stability functions is modified by a limitation of
Richardson number to parameter R, - critical Richardson number [4] [6]:

R, = _ A& (66)

(1 + a}%’c)

Q=

where vertical profile of Ri. is given by:

R
Ri. = “ (67)
1+ (U, — 1)(m)USURICE
and coefficient « is:
a=1 for momentum (68)
3Rt + Ru
= M for temperature (69)

Ri4 1s tunable parameter with vertical profile:

y OO
Rig

PBLHQ*\/§
(1+ s,

Rig = )USURIDE (70)

where PBLH is height of PBL. Ri3°, Ri°,U;, USURICE and USURIDE are
parameters.

2.5.2

’New’ stability functions

We will investigate the asymptotic behavior of 'new’ stability functions.
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1. We rewrite the sensible heat flux §/w’:
Fu = K\ RiFy(Ri) = K1 Rids(Ri)/(f(Ri))

where

3
2

= "ttt (52)" + (52)']

and calculate limit for term Ri¢s(Ri)

) ) Rif 1 1
R Ri) = —
10s(R) = T O R Ira T GG
0
for gz — 00 .
Then
_ K
0w — a +1C'4 = const
when

Gj 2_|_ @ i — t d @
G G = Cons an G o

II. We calculate the limit for the Richardson flux number 2z s:

N Cs
R’Lf = RZKm = Rlc;g(ﬁg — 03 i 04

for R; — o0

(71)

(72)

(73)

(74)

(75)

(76)

We can see that both necessary conditions for the asymptotic behavior of
stability functions are met without limitation of Richardson number to critical

Richardson number Ri..
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2.6 Tuning parameters C'5 and C;
2.6.1 Vertical profile of ('3

c%, is actually the turbulent Prandtl number at neutrality Prr(Ri = 0). Inold’
ACCOEFK it is assumed that:

Prp(Ri=0) = 1  at surface (77)
l

Prr(Ri=0) = above the surface (78)

I
We need Prr(Ri = 0) to depend on height in appropriate way, so we first
modify vertical profiles of mixing lengths ,,, [, in ACMIXLENZ so, that:

= = 1 at surface (79)
l 311
li = Cifree = e above the PBL (80)

and then we compute C3 in ACCOEFK on every level before the computation of
F,, and Fj}, as:

cg:fi (81)

U
This procedure gives us also a way how to bind [,,, and [;, and get [;, as function of
L.
Modification of profiles can be done via the choices of shaping constants
Ams Ay B, Br in subroutine ACMIXLENZ, where:

KZ
by = (82)
(a‘m/h H;bl +b'm/h>
1 + /\Hz 1+e
m/h
(am/h H;bl Jrbm/h)
/8'm/h+e
where a,/p, by, are tuning constants and H,,; is PBL height.
We force the vertical profile of /,,, and [;, by two conditions:
[ A
ieiz_%m for z — oo (83)
l
ﬁ:ﬂ, for z=0 (84)



The second relation is always true. We will keep the ’old’ values for A\, and 3,
and modify the ratios 27’; and g—: so, that the condition (83) will be met. At this
time we will use % = O3y and % =1.

In ACHMT is O = 1.

2.6.2 Tuning parameter C);

At this time we put Cy = 2.0. We assume, that this value is good above the
PBL (C3 = C3y.), but we will nead to tune Cy near the surface.

2.7 Modification in antifibrilation scheme

Vertical exchange coefficients K, and K} are used in nonlinear vertical dif-
fusion equation for computation of turbulent tendencies:

87@0 = g <K¢ W) (85)
ot 0z 0z
where ¢ stands for varibles u, v, 0, q.

Stiffness in this scheme can lead to spurious short-time but bounded oscillations-
(termed “fibrilations™) [1]. An antifibrilation scheme is used to eliminate this
problem.

The principle of the ’antifibrilation’ schemes is to time discretize the diffusion
equation into a time-shifted formulation:[1]

o _wt -y 0[(0-BKGE) + BK %) 56
o At EP

where the superscript + represents the next time step, At is the physical time step
length of the model, and /3 is the decentering factor.

The goal of the AF schemes is to locally determine 3 from the characteristics
of the flow in order to ensure the stability of the scheme on the basis of a local
linear stability analysis.[1]

In 'new’ ACCOEFK and ACHMT we use the 'new’ stability functions for
calculations of enviromental variables K,,(11) ,K;(12) and «,,, p:

e )

(87)

Ay
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Qg =

where:

dJ(R) _ —(C3 4+ Cy) +

dRi

dIn(,/f(Ri))
h ( dRi )

2f R’L < dRi

dez)

th Rl

Fth< dRi >

dRi

. (dln W@(Ri))) . (dln(mﬁﬁﬁm))
- dRi

2f(Ri) \ dRi

f(Ri)+Cy \ dRi

3Ri <df(Rz’)>_ Ri (df(Ri)+C4)

40 — 2(Cy + CY[L — (Cy + Co)Ri]

2,/(1 — (C5 + C4)Ri)? + AC4 Ri
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2.8 Current status

I started to work on this topic during my stay in Prague (4.06.2007 - 29.06.2007).
At this time, the theoretical part is finished. Also some modifications in ACCOEFK
subroutine code has been done. To make validation of ‘new’ ACCOEFK subrou-
tine it is requierd to make new evaluation of the Prandtl-type mixing length from
the TKE mixing length. Validation should be done together with new Prandtl-type
mixing lengths when available.

2.9 Appendix

In the equation (40) was used following relation:

1 — RiC3¢3(Ri) = f(Ri) (92)
We will prove, that this relation is valid.
Left side:
| — RiCya(Ri) = 1 — f%ﬁi—{ (53% _J (Ri);é - )Cj}él) ];; Culti g3
We need that:
f(Ri) (1 — C3Ri) + CyRi = f(Ri)(f(Ri) + CyRi) (94)

We rewrite the right side of the relation (94):

F(RI)(f(Ri) + CoRi) = f(Ri)f(Ri)+ f(Ri)CyRi (95)

2
— 095 (X s 4C4Rz'> 405 (X e 4C4Rz‘> C.Ri (96)

=025 (X% 42Xk (V) ) + O5CLRIT + 05CRIX (O7)

= 0.25(2X* + 4CyRi) + 0.5(X + CyRi)\/~ + 0.5C4 RiX (98)
= 05X (X + CyRi) +0.5(X + CyRi)\ /. + CyRi (99)
= 0.5(X + /2 )(X + C4Ri) + CyRi (100)
= f(Ri)(1 — (C5+ Cy)Ri+ CyRi) + C4Ri (101)
= f(Ri)(1 — C3Ri) + C4Ri (102)

where X is defined in relation (53).
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