"New" ACCOEFK subroutine in pTKE parametrisation scheme

Ivan Bašták Ďurán
under scientific supervision of Jean-François Geleyn and Filip Váňa

7.1.2008

Pseudo-prognostic TKE scheme (hereafter pTKE) is an extension of the Louis type vertical diffusion scheme. pTKE scheme consists of two parts:

1. the static part - the 'static' computation of turbulent exchange coefficients (subroutine ACCOEFK)
2. the prognostic part - modifies the 'static' exchange coefficients with prognostic TKE equation (in ACDIFUS subroutine).

This document describes an alternative to currently used static part in pTKE scheme. 'New' approach is based on TKE (Turbulent Kinetic Energy) equation for TKE at stationary equilibrium.

1 Prognostic part

For better understanding of pTKE scheme [3] [9], we shortly summarize:

1.1 Input/output of prognostic part

Inputs for the prognostic part are:

- $\tilde{K}_{m}, \tilde{K}_{h}, \tilde{K}_{n}$ - 'static' exchange coefficients for momentum, potential temperature(also specific moisture) and for momentum at neutrality,
- l_{m} - Prandtl-type mixing length for momentum and
- TKE(e) -Turbulent Kinetic Energy

Outputs are the modified exchange coefficients, which are used for computation of turbulent fluxes and the tendency of TKE.

1.2 Prognostic TKE equation

Besides the balance between wind shear and buoyancy production/destruction terms and the dissipation term enables the prognostic TKE equation also advection, horizontal diffusion and the vertical auto-diffusion of the TKE. To use TKE equation we need to link our inputs (similarity laws) with the input parameters for TKE equation (TKE formalism):

- TKE,
- K_{E}-vertical exchange coefficient for TKE and
- τ_{ϵ} - dissipation time scale.

1.3 Link between similarity laws and TKE formalism

The method proposed by Redelsperger, Mahé and Carlotti(2001) [7] is used to provide this link. We have:

$$
\begin{gather*}
K_{m}=\nu l_{m} \Phi_{L}\left(\frac{K_{m}}{K_{n}}\right) \sqrt{e} \tag{1}\\
\frac{1}{\tau_{\epsilon}}=\nu^{3} \frac{1}{l_{m} \Psi_{L}\left(\frac{K_{m}}{K_{n}}\right)} \tag{2}
\end{gather*}
$$

where $\nu^{4}=C_{K} * C_{\epsilon}\left(C_{K}\right.$ and C_{ϵ} are constants) and $\Psi_{L}\left(\frac{K_{m}}{K_{n}}\right)$ and $\Phi_{L}\left(\frac{K_{m}}{K_{n}}\right)$ are stability function in expressions for sub-grid-scale lengths:

$$
\begin{align*}
L_{K} & =A z \Phi_{L}\left(\phi_{E}, \phi_{m}\right) \tag{3}\\
L_{\epsilon} & =A z \Psi_{L}\left(\phi_{E}, \phi_{m}\right) \tag{4}
\end{align*}
$$

where ϕ_{E}, ϕ_{m} are Monin-Obukhov stability functions.

To make the relations (1) and (2) free from stability functions new variables were introduced to the scheme $-K_{*}$ and ν_{*} :

$$
\begin{gather*}
\nu_{*}=\frac{\nu}{\left(\Psi_{L}\right)^{\frac{1}{3}}} \tag{5}\\
K_{*}=\frac{K_{m}}{\Phi_{L}\left(\Psi_{L}\right)^{\frac{1}{3}}} \tag{6}
\end{gather*}
$$

Two hypotheses has been made for Monin-Obukhov stability functions: $f \phi_{m}=1$ and $\phi_{m}^{2}=\frac{K_{n}}{K_{m}}$. We get:

$$
\begin{array}{r}
\nu_{*}=\frac{\nu}{\phi_{E} \phi_{m}^{2}} \approx \nu \approx 0.52 \\
K_{*}=\sqrt{K_{n} K_{m}} \tag{8}
\end{array}
$$

1.4 Link to output

\tilde{K}_{*} is computed from the 'static' exchange coefficients \tilde{K}_{m} and \tilde{K}_{n}. This is used to estimate parameters for the TKE equation. K_{*} is calculated from the 'new' TKE, which is given by TKE equation. At this point we need to make the last step from the K_{*} and \tilde{K}_{*} exchange coefficients to the 'new' exchange coefficients K_{m} and K_{h} (output of pTKE):

$$
\begin{align*}
K_{m} & =K_{*} \frac{\tilde{K}_{m}}{\tilde{K}_{*}} \tag{9}\\
K_{h} & =K_{*} \frac{\tilde{K}_{h}}{\tilde{K}_{*}} \tag{10}
\end{align*}
$$

2 Static part - 'new' ACCOEFK

First we describe the 'old' ACCOEFK:

2.1 'Old' ACCOEFK subroutine

Subroutine ACCOEFK [5] computes 'static' exchange coefficients and is based on 'Louis' technique [8]:

$$
\begin{align*}
\tilde{K}_{m} & =l_{m} l_{m}\left[\left(\frac{\partial \bar{u}}{\partial z}\right)^{2}+\left(\frac{\partial \bar{v}}{\partial z}\right)^{2}\right]^{\frac{1}{2}} F_{m}(R i) \tag{11}\\
\tilde{K}_{h} & =l_{m} l_{h}\left[\left(\frac{\partial \bar{u}}{\partial z}\right)^{2}+\left(\frac{\partial \bar{v}}{\partial z}\right)^{2}\right]^{\frac{1}{2}} F_{h}(R i) \tag{12}\\
\tilde{K}_{N} & =l_{m} l_{m}\left[\left(\frac{\partial \bar{u}}{\partial z}\right)^{2}+\left(\frac{\partial \bar{v}}{\partial z}\right)^{2}\right]^{\frac{1}{2}} \tag{13}
\end{align*}
$$

where $F_{m}(R i)$ and $F_{h}(R i)$ are shaping stability functions:
-stable case:

$$
\begin{array}{r}
F_{m}(R i)=\frac{1}{1+\frac{2 b R i}{\sqrt{1+\frac{d}{k} R i}}} \\
F_{h}(R i)=\frac{1}{1+3 b R i \sqrt{1+d k R i}} \tag{15}
\end{array}
$$

-unstable case:

$$
\begin{align*}
& F_{m}(R i)=1-\frac{2 b R i}{1+3 b c \sqrt{\frac{|R i|}{27}}\left(\frac{l_{m}}{z+z_{0}}\right)^{2}} \tag{16}\\
& F_{h}(R i)=1-\frac{3 b R i}{1+3 b c \sqrt{\frac{|R i|}{27}}\left(\frac{l_{h}}{z+z_{0 h}}\right)\left(\frac{l_{m}}{z+z_{0}}\right)} \tag{17}
\end{align*}
$$

where $\mathbf{b}, \mathbf{c}, \mathrm{d}, \mathrm{k}$ are constants and z_{0} and $z_{0 h}$ are roughness lengths for momentum and potential temperature, respectively.

2.2 'New' ACCOEFK subroutine

'New' ACCOEFK will use TKE equation for TKE at stationary equilibrium $\left(\frac{\partial e}{\partial t}=0\right)$ and by using only three terms on the rhs of the TKE equation: wind shear(I), buoyancy(II) production/destruction term and the dissipation term(III) for estimation of 'static' exchange coefficients:

$$
\begin{equation*}
0=I(\tilde{e})+I I(\tilde{e})+I I I(\tilde{e}) \tag{18}
\end{equation*}
$$

where \tilde{e} is TKE at stationary equilibrium. The omitted terms on the rhs of full TKE equation will be added later in the prognostic part of pTKE.

We will use following expressions for I, II and III from the Cuxart, Bougealt and Redelsperger(CBR) turbulence scheme [2]:

$$
\begin{align*}
I=-\overline{u^{\prime} w^{\prime}} \frac{\partial \bar{u}}{\partial z}-\overline{v^{\prime} w^{\prime}} \frac{\partial \bar{v}}{z} & =\frac{4}{15} \frac{L}{C_{m}} \sqrt{e}\left[\left(\frac{\partial \bar{u}}{\partial z}\right)^{2}+\left(\frac{\partial \bar{v}}{\partial z}\right)^{2}\right] \tag{19}\\
I I=\frac{g}{\theta_{r} e f} \overline{\theta^{\prime} w^{\prime}} & =-\frac{g}{\theta_{r e f}} \frac{2 L}{3 C_{s}} \sqrt{e} \frac{\partial \bar{\theta}}{\partial z} \phi_{3}(R i) \tag{20}\\
I I I & =-C_{\epsilon} \frac{(e)^{\frac{3}{2}}}{L} \tag{21}
\end{align*}
$$

where L is the mixing length. We suggest that $L / l_{m}=$ const. $\phi_{3}(R i)$ is stability function (see [7]):

$$
\begin{gather*}
\phi_{3}(R i)=\frac{1}{1+\frac{C_{4} R i}{f(R i)}} \tag{22}\\
f(R i)=\frac{1}{2}\left(1-\left(C_{3}+C_{4}\right) R i+\sqrt{\left[\left(1-\left(C_{3}+C_{4}\right) R i\right)^{2}+4 C_{4} R i\right]}\right) \tag{23}\\
C_{3}=\frac{C_{H}}{C_{K}} \tag{24}\\
C_{4}=\frac{C_{H} C_{\epsilon}}{C_{K} C_{\theta}} \tag{25}
\end{gather*}
$$

where $C_{H}, C_{K}, C_{m}, C_{s}, C_{\theta}, C_{\epsilon}$ are closure constants and Ri is Richardson number, that will be estimated the same way as in the 'old' ACCOEFK.

We can solve (18) analytical. First we substitute $\sqrt{\tilde{e}}=X$ and write (18)) this way:

$$
\begin{equation*}
0=A\left(L, \frac{\partial \bar{u}}{\partial z}\right) X+B\left(L, \frac{\partial \bar{\theta}}{\partial z}, R i\right) X+C(L) X^{3} \tag{26}
\end{equation*}
$$

We get 3 solutions:

$$
\begin{equation*}
X_{1}=0 \quad X_{2}=-\sqrt{\frac{D}{C}} \quad X_{3}=\sqrt{\frac{D}{C}} \tag{27}
\end{equation*}
$$

where $\mathrm{D}=-(\mathrm{A}+\mathrm{B})$. First solution is trivial. TKE is a real positive number, so the term $\frac{D}{C}$ must be positive or zero. We get :

$$
\begin{align*}
\tilde{e} & =\frac{D}{C}>=0 \tag{28}\\
& =\frac{L^{2}}{C_{\epsilon}}\left(\frac{4}{15} \frac{1}{C_{m}}\left[\left(\frac{\partial \bar{u}}{\partial z}\right)^{2}+\left(\frac{\partial \bar{v}}{\partial z}\right)^{2}\right]-\frac{g}{\theta_{r e f}} \frac{2}{3 C_{s}} \frac{\partial \bar{\theta}}{\partial z} \phi_{3}(R i)\right) \tag{29}
\end{align*}
$$

We use the definition of the (bulk) Richardson number Ri:

$$
\begin{equation*}
R i=\frac{g}{\theta_{\text {ref }}} \frac{\frac{\partial \bar{\theta}}{\partial z}}{\left[\left(\frac{\partial \bar{u}}{\partial z}\right)^{2}+\left(\frac{\partial \bar{v}}{\partial z}\right)^{2}\right]} \tag{30}
\end{equation*}
$$

to eliminate $\frac{g}{\theta_{r e f}} \frac{\partial \bar{\theta}}{\partial z}$ in (29). Additionally we use these relations for constants C_{s} and C_{m} :

$$
\begin{align*}
C_{K} & =\frac{4}{15 C_{m}} \tag{31}\\
C_{s} & =\frac{2}{3 C_{3} C_{K}} \tag{32}
\end{align*}
$$

We get:

$$
\begin{equation*}
\tilde{e}=\frac{L^{2} C_{K}}{C_{\epsilon}}\left(1-R i C_{3} \phi_{3}(R i)\right)\left[\left(\frac{\partial \bar{u}}{\partial z}\right)^{2}+\left(\frac{\partial \bar{v}}{\partial z}\right)^{2}\right] \tag{33}
\end{equation*}
$$

'Static' exchange coefficients will be then computed following:

$$
\begin{gather*}
\tilde{K}_{m}=\frac{4 L}{15 C_{m}} \sqrt{\tilde{e}}=C_{K} L \sqrt{\tilde{e}} \tag{34}\\
\tilde{K}_{h}=\frac{2 L}{3 C_{s}} \phi_{3}(R i) \sqrt{\tilde{e}}=C_{3} C_{K} \phi_{3}(R i) L \sqrt{\tilde{e}} \tag{35}
\end{gather*}
$$

In neutral case $\left(R i=0, \phi_{3}(R i=0)=1\right)$ we get for $\tilde{K}_{m}(R i=0)=\tilde{K}_{N}$:

$$
\begin{align*}
\tilde{K}_{N} & =C_{K} L \sqrt{\frac{L^{2} C_{K}}{C_{\epsilon}}\left[\left(\frac{\partial \bar{u}}{\partial z}\right)^{2}+\left(\frac{\partial \bar{v}}{\partial z}\right)^{2}\right]} \tag{36}\\
& =\left(L\left(\frac{C_{\epsilon}}{C_{K}^{3}}\right)^{-\frac{1}{4}}\right)^{2}\left[\left(\frac{\partial \bar{u}}{\partial z}\right)^{2}+\left(\frac{\partial \bar{v}}{\partial z}\right)^{2}\right]^{\frac{1}{2}} \tag{37}\\
& =l_{m} l_{m}\left[\left(\frac{\partial \bar{u}}{\partial z}\right)^{2}+\left(\frac{\partial \bar{v}}{\partial z}\right)^{2}\right]^{\frac{1}{2}} \tag{38}
\end{align*}
$$

Relation for $L\left(l_{m}\right)$ is:

$$
\begin{equation*}
L=l_{m}\left(\frac{C_{\epsilon}}{C_{K}{ }^{3}}\right)^{\frac{1}{4}} \tag{39}
\end{equation*}
$$

Now we can write 'new' stability functions F_{m} and F_{h}, which are functions of Richardson number only:

$$
\begin{align*}
F_{m}(R i) & =\frac{\tilde{K}_{m}}{\tilde{K}_{m}(R i=0)}=\frac{\tilde{K}_{m}}{\tilde{K}_{N}} \\
& =\sqrt{\left(1-R i C_{3} \phi_{3}(R i)\right)}=\sqrt{f(R i)} \tag{40}\\
F_{h}(R i) & =\frac{\tilde{K}_{h}}{\tilde{K}_{h}(R i=0)}=\frac{\tilde{K}_{h}}{C_{3} \tilde{K}_{N}}=C_{3} \phi_{3}(R i) \frac{1}{C_{3}} \sqrt{\left(1-R i C_{3} \phi_{3}(R i)\right)} \\
& =\phi_{3}(R i) \sqrt{f(R i)}=\phi_{3}(R i) F_{m}(R i) \tag{41}
\end{align*}
$$

C_{3} and C_{4} are the only tuning constant in the computation of F_{m} and F_{h}.

2.3 Corrections for computation of stability functions

We will rewrite $\phi_{3}(R i)$ for computation following:

$$
\begin{equation*}
\phi_{3}(R i)=\frac{f}{f+C_{4} R i} \tag{42}
\end{equation*}
$$

We will prove that the term $f+C_{4} R i$ is always positive for $R i \leq 0$. We suggest that $C_{3}>0$ and $C_{4}>0$:

$$
\begin{align*}
f+C_{4} R i= & \frac{1}{2}\left(1-\left(C_{3}+C_{4}\right) R i+\sqrt{\left(1-\left(C_{3}+C_{4}\right) R i\right)^{2}+4 C_{4} R i}\right. \tag{43}\\
& \left.+2 C_{4} R i\right) \\
= & \frac{1}{2}\left(1+\left(C_{4}-C_{3}\right) R i+\sqrt{\left(1-\left(C_{3}+C_{4}\right) R i\right)^{2}+4 C_{4} R i}\right)(4 \tag{44}
\end{align*}
$$

We rewrite the term under square root:

$$
\begin{align*}
\left(1-\left(C_{3}+C_{4}\right) R i\right)^{2}+4 C_{4} R i= & 1-2\left(C_{3}+C_{4}\right) R i+\left(C_{3}+C_{4}\right)^{2} R i^{2}(45) \\
& +4 C_{4} R i \\
= & 1+2\left(C_{3}+C_{4}\right) R i+\left(C_{3}+C_{4}\right)^{2} R i^{2}(46) \\
& -4 C_{3} R i \\
> & \left(1+\left(C_{3}+C_{4}\right) R i\right)^{2} \tag{47}
\end{align*}
$$

For $R i \leq-\frac{1}{C_{3}+C_{4}}$:

$$
\begin{align*}
f+C_{4} R i & >\frac{1}{2}\left(1+\left(C_{4}-C_{3}\right) R i-\left(1+\left(C_{3}+C_{4}\right) R i\right)\right) \tag{48}\\
& >\frac{1}{2}\left(-2 C_{3} R i\right)>0 \tag{49}
\end{align*}
$$

For $0 \geq R i>-\frac{1}{C_{3}+C_{4}}$:

$$
\begin{align*}
f+C_{4} R i> & \frac{1}{2}\left(1+\left(C_{4}-C_{3}\right) R i+\left(1+\left(C_{3}+C_{4}\right) R i\right)\right) \tag{50}\\
> & \frac{1}{2}\left(2+2 C_{4} R i\right)>0 \text { for } R i>-\frac{1}{C_{4}} \tag{51}\\
& R i>-\frac{1}{C_{3}+C_{4}}>-\frac{1}{C_{4}} \tag{52}
\end{align*}
$$

For $R i>0$ exists a risk that the term $f+C_{4} R i$ could be equal zero, when $f(R i)<0 . f(R i)<0$ could be also a problem in the computation of the function $F_{m}=\sqrt{f(R i)}$. We calculate limits for $f(R i)$:

$$
\begin{align*}
f(R i)=0.5\left(X+\sqrt{X^{2}+4 C_{4} R i}\right) & X=1-\left(C_{3}+C_{4}\right) R i \tag{53}\\
X \rightarrow \infty \text { for } R i \rightarrow-\infty & f(R i) \rightarrow \infty \text { for } R i \rightarrow-\infty \tag{54}
\end{align*}
$$

$$
\begin{array}{r}
X \rightarrow-\infty \frac{X}{R i} \rightarrow-\left(C_{3}+C_{4}\right) \text { for } R i \rightarrow \infty \\
f(R i)=0.5\left(X+\sqrt{X^{2}+4 C_{4} R i}\right) \frac{\sqrt{X^{2}+4 C_{4} R i}-X}{\sqrt{X^{2}+4 C_{4} R i}-X} \\
f(R i)=0.5 \frac{4 C_{4} R i}{\sqrt{X^{2}+4 C_{4} R i}-X} \\
f(R i)=\frac{2 C_{4}}{\sqrt{\left(\frac{X}{R i}\right)^{2}+\frac{4 C_{4}}{R i}}-\frac{X}{R i}} \\
f(R i) \rightarrow \frac{2 C_{4}}{2\left(C_{3}+C_{4}\right)}=\frac{C_{4}}{\left(C_{3}+C_{4}\right)}>0 \text { for } R i \rightarrow \infty \tag{59}
\end{array}
$$

$f(R i)$ is always greater then 0 .

2.4 Modifications in ACHMT subroutine

The computation of drag coefficients PCD (for wind components) and PCH (for temperature and humidity) [5] is related to the computation of vertical exchange coefficients through the stability functions F_{m} and F_{h} :

$$
\begin{align*}
& P C D=P C D N \cdot F_{m} \tag{60}\\
& P C H=Z C D N H \cdot F_{h} \tag{61}
\end{align*}
$$

where PCDN and ZCDNH are drag coefficients at neutrality.
We replace the 'old' stability functions with the 'new' stability functions.

2.5 Asymptotic features of stability functions

Two necessary conditions for the asymptotic behavior of stability functions have to be met for stability functions [4] [6] :
I. an asymptotic value of the sensible heat flux:

$$
\begin{gather*}
\overline{\theta^{\prime} w^{\prime}}=l_{m} l_{h} \sqrt{\left[\left(\frac{\partial \bar{u}}{\partial z}\right)^{2}+\left(\frac{\partial \bar{v}}{\partial z}\right)^{2}\right]} \frac{\partial \bar{\theta}}{\partial z} F_{h}(\text { Ri }) \rightarrow \text { const } \tag{62}\\
\text { when } \sqrt{\left[\left(\frac{\partial \bar{u}}{\partial z}\right)^{2}+\left(\frac{\partial \bar{v}}{\partial z}\right)^{2}\right]}=\text { const } \quad \text { and } \quad \frac{\partial \bar{\theta}}{\partial z} \rightarrow \infty \tag{63}
\end{gather*}
$$

II. and convergent critical Richardson flux number $R i_{f}$ independent with respect to the critical Richardson number when $R i \rightarrow \infty$:

$$
\begin{gather*}
R i_{f}=\frac{g}{\theta_{\text {ref }}} \frac{\overline{\overline{u^{\prime} w^{\prime}} \frac{\partial \bar{u} w^{\prime}}{\partial z}+\overline{v^{\prime} w^{\prime}} \frac{\partial \bar{v}}{\partial z}}=R_{i} \frac{K_{h}}{K_{m}} \rightarrow \text { const }}{\text { when } R i \rightarrow \infty} \text {. } \tag{64}
\end{gather*}
$$

2.5.1 'Old' stability functions - usage of the critical Richardson number

Asymptotic behavior of 'old' stability functions is modified by a limitation of Richardson number to parameter $R i_{c}$ - critical Richardson number [4] [6]:

$$
\begin{equation*}
R_{i}^{\prime}=\frac{R_{i}}{\left(1+\alpha \frac{R_{i}}{R i_{c}}\right)^{\frac{1}{\alpha}}} \tag{66}
\end{equation*}
$$

where vertical profile of $R i_{c}$ is given by:

$$
\begin{equation*}
R i_{c}=\frac{R i_{c}^{\infty}}{1+\left(U_{l}-1\right)\left(\frac{l_{h}}{\kappa\left(z+z_{O H}\right)}\right)^{U S U R I C E}} \tag{67}
\end{equation*}
$$

and coefficient α is:

$$
\begin{array}{rll}
\alpha=1 & \text { for } & \text { momentum } \\
\alpha=\frac{3 R i+R i_{d}}{R i+R i_{d}} & \text { for } & \text { temperature } \tag{69}
\end{array}
$$

$R i_{d}$ is tunable parameter with vertical profile:

$$
\begin{equation*}
R i_{d}=\frac{R i_{d}^{\infty}}{\left(1+\frac{P B L H^{2} * \sqrt{3}}{\left(z+z_{0 H}\right)\left(z+z_{0}\right)}\right)} \tag{70}
\end{equation*}
$$

where PBLH is height of PBL. $R i_{d}^{\infty}, R i_{c}^{\infty}, U_{l}, U S U R I C E$ and $U S U R I D E$ are parameters.

2.5.2 'New' stability functions

We will investigate the asymptotic behavior of 'new' stability functions.
I. We rewrite the sensible heat flux $\overline{\theta^{\prime} w^{\prime}}$:

$$
\begin{equation*}
\overline{\theta^{\prime} w^{\prime}}=K_{1} R i F_{h}(R i)=K_{1} R i \phi_{3}(R i) \sqrt{(f(R i))} \tag{71}
\end{equation*}
$$

where

$$
\begin{equation*}
K_{1}=\frac{\theta_{r e f}}{g} l_{m} l_{h}\left[\left(\frac{\partial \bar{u}}{\partial z}\right)^{2}+\left(\frac{\partial \bar{v}}{\partial z}\right)^{2}\right]^{\frac{3}{2}} \tag{72}
\end{equation*}
$$

and calculate limit for term $\left.\mathrm{Ri}_{\mathrm{h}}{ }^{(} \mathrm{Ri}\right)$

$$
\begin{array}{r}
\operatorname{Ri\phi }_{3}(R i)=\frac{R i f}{f+C_{4} R i}=\frac{1}{\frac{1}{R i}+\frac{C_{4}}{f}} \rightarrow \frac{1}{C_{3}+C_{4}} \tag{73}\\
\quad \text { for } \frac{\partial \bar{\theta}}{\partial z} \rightarrow \infty
\end{array}
$$

Then

$$
\begin{equation*}
\overline{\theta^{\prime} w^{\prime}} \rightarrow \frac{K_{1}}{C_{3}+C_{4}}=\text { const } \tag{74}
\end{equation*}
$$

when

$$
\begin{equation*}
\sqrt{\left[\left(\frac{\partial \bar{u}}{\partial z}\right)^{2}+\left(\frac{\partial \bar{v}}{\partial z}\right)^{2}\right]}=\text { const } \quad \text { and } \quad \frac{\partial \bar{\theta}}{\partial z} \rightarrow \infty \tag{75}
\end{equation*}
$$

II. We calculate the limit for the Richardson flux number $R i_{f}$:

$$
\begin{equation*}
R i_{f}=R_{i} \frac{K_{h}}{K_{m}}=R_{i} C_{3} \phi_{3} \rightarrow \frac{C_{3}}{C_{3}+C_{4}} \text { for } R_{i} \rightarrow \infty \tag{76}
\end{equation*}
$$

We can see that both necessary conditions for the asymptotic behavior of stability functions are met without limitation of Richardson number to critical Richardson number $R i_{c}$.

2.6 Tuning parameters C_{3} and C_{4}

2.6.1 Vertical profile of C_{3}

$\frac{1}{C_{3}}$ is actually the turbulent Prandtl number at neutrality $\operatorname{Pr}_{T}(R i=0)$. In 'old' ACCOEFK it is assumed that:

$$
\begin{align*}
& \operatorname{Pr}_{T}(R i=0)=1 \quad \text { at surface } \tag{77}\\
& \operatorname{Pr}_{T}(R i=0)=\frac{l_{m}}{l_{h}} \quad \text { above the surface } \tag{78}
\end{align*}
$$

We need $\operatorname{Pr}_{T}(R i=0)$ to depend on height in appropriate way, so we first modify vertical profiles of mixing lengths l_{m}, l_{h} in ACMIXLENZ so, that:

$$
\begin{align*}
& \frac{l_{h}}{l_{m}}=1 \quad \text { at surface } \tag{79}\\
& \frac{l_{h}}{l_{m}}=C_{3 \text { free }}=\frac{3 \Pi}{4} \quad \text { above the PBL } \tag{80}
\end{align*}
$$

and then we compute C_{3} in ACCOEFK on every level before the computation of F_{m} and F_{h} as:

$$
\begin{equation*}
C_{3}=\frac{l_{h}}{l_{m}} . \tag{81}
\end{equation*}
$$

This procedure gives us also a way how to bind l_{m} and l_{h} and get l_{h} as function of l_{m}.

Modification of profiles can be done via the choices of shaping constants $\lambda_{m}, \lambda_{h}, \beta_{m}, \beta_{h}$ in subroutine ACMIXLENZ, where:

$$
\begin{equation*}
\left.l_{m / h}=\frac{\kappa z}{1+\frac{\kappa z}{\lambda_{m / h}}\left[\frac{1+e}{\left(-a_{m / h} \sqrt{H_{p b l}^{z}}+b m / h\right.}\right)} \underset{\beta_{m / h}+e}{\left(-a_{m / h} \sqrt{\frac{z}{H_{p b l}}}+b m / h\right)}\right] \tag{82}
\end{equation*}
$$

where $a_{m / h}, b_{m / h}$ are tuning constants and $H_{p b l}$ is PBL height.
We force the vertical profile of l_{m} and l_{h} by two conditions:

$$
\begin{array}{rr}
\frac{l_{h}}{l_{m}} \rightarrow \frac{\lambda_{h}}{\lambda_{m}} \frac{\beta_{h}}{\beta_{m}}=C_{3 \text { free }} & \text { for } z \rightarrow \infty \\
\frac{l_{h}}{l_{m}}=1 & \text { for } z=0 \tag{84}
\end{array}
$$

The second relation is always true. We will keep the 'old' values for λ_{m} and β_{m} and modify the ratios $\frac{\lambda_{h}}{\lambda_{m}}$ and $\frac{\beta_{h}}{\beta_{m}}$ so, that the condition (83) will be met. At this time we will use $\frac{\lambda_{h}}{\lambda_{m}}=C_{3 \text { free }}$ and $\frac{\beta_{h}}{\beta_{m}}=1$.

In ACHMT is $C_{3}=1$.

2.6.2 Tuning parameter C_{4}

At this time we put $C_{4}=2.0$. We assume, that this value is good above the $\operatorname{PBL}\left(C_{3}=C_{3 \text { free }}\right.$), but we will nead to tune C_{4} near the surface.

2.7 Modification in antifibrilation scheme

Vertical exchange coefficients K_{m} and K_{h} are used in nonlinear vertical diffusion equation for computation of turbulent tendencies:

$$
\begin{equation*}
\frac{\partial \psi}{\partial t}=\frac{\partial}{\partial z}\left(K_{\psi} \frac{\partial \psi}{\partial z}\right) \tag{85}
\end{equation*}
$$

where ψ stands for varibles u, v, θ, q.
Stiffness in this scheme can lead to spurious short-time but bounded oscillations(termed "fibrilations") [1]. An antifibrilation scheme is used to eliminate this problem.

The principle of the 'antifibrilation' schemes is to time discretize the diffusion equation into a time-shifted formulation:[1]

$$
\begin{equation*}
\frac{\partial \psi}{\partial t}=\frac{\psi^{+}-\psi}{\Delta t}=\frac{\partial\left[(1-\beta)\left(K_{\psi} \frac{\partial \psi}{\partial z}\right)+\beta\left(K_{\psi} \frac{\partial \psi^{+}}{\partial z}\right)\right]}{\partial z} \tag{86}
\end{equation*}
$$

where the superscript + represents the next time step, Δt is the physical time step length of the model, and β is the decentering factor.

The goal of the AF schemes is to locally determine β from the characteristics of the flow in order to ensure the stability of the scheme on the basis of a local linear stability analysis.[1]

In 'new' ACCOEFK and ACHMT we use the 'new' stability functions for calculations of enviromental variables $K_{m}(11), K_{h}(12)$ and $\alpha_{u}, \alpha_{\theta}$:

$$
\begin{equation*}
\alpha_{u}=\frac{R i}{F_{m}(R i)}\left(\frac{d F_{m}(R i)}{d R i}\right) \tag{87}
\end{equation*}
$$

$$
\begin{align*}
& =R i\left(\frac{d \ln (\sqrt{f(R i)})}{d R i}\right) \\
& =\frac{R i}{2 f(R i)}\left(\frac{d f(R i)}{d R i}\right) \tag{88}\\
\alpha_{\theta} & =\frac{R i}{F_{h}(R i)}\left(\frac{d F_{h}(R i)}{d R i}\right) \tag{89}\\
& =R i\left(\frac{d \ln \left(\sqrt{f(R i)} \phi_{3}(R i)\right)}{d R i}\right)=R i\left(\frac{d \ln \left(\frac{f(R i)}{f(R i)+C_{4} R i}\right)}{d R i}\right) \\
& =\frac{3 R i}{2 f(R i)}\left(\frac{d f(R i)}{d R i}\right)-\frac{R i}{f(R i)+C_{4}}\left(\frac{d f(R i)}{d R i}+C_{4}\right) \tag{90}
\end{align*}
$$

where:

$$
\begin{equation*}
\frac{d f(R i)}{d R i}=-\left(C_{3}+C_{4}\right)+\frac{4 C_{4}-2\left(C_{3}+C_{4}\right)\left[1-\left(C_{3}+C_{4}\right) R i\right]}{2 \sqrt{\left(1-\left(C_{3}+C_{4}\right) R i\right)^{2}+4 C_{4} R i}} \tag{91}
\end{equation*}
$$

2.8 Current status

I started to work on this topic during my stay in Prague (4.06.2007-29.06.2007). At this time, the theoretical part is finished. Also some modifications in ACCOEFK subroutine code has been done. To make validation of 'new' ACCOEFK subroutine it is requierd to make new evaluation of the Prandtl-type mixing length from the TKE mixing length. Validation should be done together with new Prandtl-type mixing lengths when available.

2.9 Appendix

In the equation (40) was used following relation:

$$
\begin{equation*}
1-R i C_{3} \phi_{3}(R i)=f(R i) \tag{92}
\end{equation*}
$$

We will prove, that this relation is valid.
Left side:

$$
\begin{equation*}
1-R i C_{3} \phi_{3}(R i)=1-\frac{C_{3} R i f(R i)}{f(R i)+C_{4} R i}=\frac{f(R i)\left(1-C_{3} R i\right)+C_{4} R i}{f(R i)+C_{4} R i} \tag{93}
\end{equation*}
$$

We need that:

$$
\begin{equation*}
f(R i)\left(1-C_{3} R i\right)+C_{4} R i=f(R i)\left(f(R i)+C_{4} R i\right) \tag{94}
\end{equation*}
$$

We rewrite the right side of the relation (94):

$$
\begin{align*}
& f(R i)\left(f(R i)+C_{4} R i\right)=f(R i) f(R i)+f(R i) C_{4} R i \tag{95}\\
= & 0.25\left(X+\sqrt{X+4 C_{4} R i}\right)^{2}+0.5\left(X+\sqrt{X+4 C_{4} R i}\right) C_{4} R i \tag{96}\\
= & 0.25\left(X^{2}+2 X \sqrt{\cdots}+(\sqrt{\cdots})^{2}\right)+0.5 C_{4} R i \sqrt{\cdots}+0.5 C_{4} R i X \tag{97}\\
= & 0.25\left(2 X^{2}+4 C_{4} R i\right)+0.5\left(X+C_{4} R i\right) \sqrt{\cdots}+0.5 C_{4} R i X \tag{98}\\
= & 0.5 X\left(X+C_{4} R i\right)+0.5\left(X+C_{4} R i\right) \sqrt{\cdots}+C_{4} R i \tag{99}\\
=\quad & 0.5(X+\sqrt{\cdots})\left(X+C_{4} R i\right)+C_{4} R i \tag{100}\\
=\quad & f(R i)\left(1-\left(C_{3}+C_{4}\right) R i+C_{4} R i\right)+C_{4} R i \tag{101}\\
=\quad & f(R i)\left(1-C_{3} R i\right)+C_{4} R i \tag{102}
\end{align*}
$$

where X is defined in relation (53).

References

[1] Bénard, P., A. Marki, P.N. Neytchev, and M.T. Prtenjak, 2000: Stabilization of Nonlinear Vertical Diffusion Schemes in the Context of NWP Models. Mon. Wea. Rev., 128, 1937-1948.
[2] J. Cuxart, P. Bougeault, and J. L. Redelsperger, 2000: A turbulence scheme allowing for mesoscale and large-eddy simulations. Querterly Journal of the Royal Meteorological Society, 126.,1-30, January 2000.
[3] J.-F. Geleyn, J. Cedilnik, M. Tudor, F. Vana, 2006: ACDIFUS_prog (or pseudo-TKE) and its ingredients.
[4] J.-F. Geleyn, A. Simon, M. Sandev, J.-M. Piriou, J. Boutahar, 1999: Vertically varying limitation for the very stable case parameterization.
[5] Gerard, L.: 2001, Physical Parameterizations in Arpege-Aladin operational model,
Version 2.1 - November 2001.
[6] M. Bellus, J.-F. Geleyn, J.-M. Piriou, 2000: New usage of the critical Richardson number for (very) stable atmosphere.
[7] Redelsperger, J., F. Mahe, and P. Carlotti, 2001: A simple and general subgrid model suitable both for surface layer and free stream turbulence. Bound.-Layer Meteor., 101, 375-408.
[8] Louis, J. F.: 1979, 'A parametric model of vertical eddy fluxes in the atmosphere', Boundary-Layer Meteorology 17, 187-202.
[9] F. Vana, 2007: pTKE scheme as the extension of the K-diffusion scheme

