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Main target of this document is to outline design of a new parameterization of cloud
optical properties. It does not aim to replace detailed report, which will be prepared
later. It is supposed that reader is familiar with the subject, so the basic concepts are
not explained here.

1 Introduction

Current radiation scheme used in model ALADIN (in following text referred as old
ACRANEB) divides electromagnetic spectrum just in 2 bands – solar and thermal. In
each band it applies δ-two stream approximation of radiative transfer equations. With
such broad spectral division it is crucial to treat so called saturation effect, caused by
wavelength dependency of absorption coefficient kabs, scattering coefficient kscat and
asymmetry factor g. What makes this treatment difficult is a non-local dependency of
saturation effect on cloud properties (i.e. saturation at given cloud layer depends also
on properties and geometry of cloud layers above and below).

However, in old ACRANEB only mean saturation effect is applied locally, regardless
of cloud geometry (i.e. the same correction for isolated cloud layer as for vertically
developped cloud). Moreover, dependency of liquid/ice cloud optical coefficients kabsl|i ,

kscatl|i and gl|i on liquid/ice water content ρl|i is ignored.
Because radiation scheme is the most expensive physical parameterization in terms of

CPU, it was decided to keep 2 spectral bands also in ALARO-0. But since microphysics
will provide prognostic cloud water and ice, it is highly desirable to avoid the 2
simplifications of cloud treatment used in old ACRANEB.

2 Strategy of work

New parameterization scheme is based on the same sample of experimental cloud data
as the old one. The idea was to create idealized cloud simulation model, which would
solve radiative transfer equation in clouds wavelength by wavelength (monochromatic
computations), taking into account only diffuse fluxes and ignoring the effect of gases.
Spectrally integrated fluxes from these simulations would serve as a reference for
parameterized version, they also enable explicit evaluation of saturation effect.
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3 Experimental data

Experimental cloud data were kindly provided by Bodo Ritter (DWD). They consist of
3 parts:

1. Data of Stephens for 8 liquid cloud types (cloud liquid water content; volume
extinction coefficient, single scattering albedo and asymmetry factor for 107
wavelengths).

2. Data of Röckel et al. for 40 ice cloud types (cloud ice water content; volume
extinction coefficient, single scattering albedo and asymmetry factor for 378
wavelengths).

3. Data of Labs and Neckell, resp. Theakara and Drummond for solar insolation at
the top of atmosphere (given as weights, i.e. normalized solar energy coming in
102 spectral intervals).

Since the 3 data sources were using different wavelength samplings, it was necessary
to preprocess the data. Preprocessing consisted of these steps:

• Selection of 7 liquid clouds1 and 16 ice clouds with highest ice water content.

• Merging wavelengths from all data sources.

• Dividing wavelengths into spectral bands2:

λmin [µm] λmax [µm]

solar band 0.300 4.642
thermal band 4.642 105.000

• Conversion of extinction coefficient kext and single scattering albedo $ to
absorption and scattering coefficients kabs, kscat.

• Linear interpolation of coefficients kabs, kscat and g into target wavelengths.

• Conversion of volume coefficients [m−1] into mass coefficients3 [m2 · kg−1]:

(kl|i)mass =
(kl|i)vol

ρl|i

• Conversion of solar weights into weight function (spectral energy density),
interpolation to target wavelengths assuming stepwise dependency.

• Computation of thermal weight function (Planck function Bλ(T ) with temperature
T = 255.8K) for target wavelengths.

1Type stratocumulus 2 was excluded, since it was spoiling the fits.
2Solar band in ALADIN is wider, covering part of UV region where intense O3 absorption takes

place. Liquid cloud data were restricted by λ = 0.300µm. This can be afforded in cloud model, where
gaseous absorption is ignored. Less than 1% of solar insolation belongs to neglected UV region.

3In ALADIN mass coefficients are further divided by gravity acceleration, which gives units [Pa−1].

2



4 Cloud simulation model 0

Cloud simulation model 0 performs monochromatic computations for homogeneous
cloud (only one cloud layer with liquid water content ρl, ice water content ρi, geometrical
depth ∆z and cloud fraction n = 1). In each spectral band it is assumed that cloud is
illuminated from the top by diffuse radiation with spectral composition given by weight
function wλ. In this case outgoing monochromatic fluxes at layer bottom and top are
given by:

[

F
↓
Bλ

F
↑
T λ

]

=

[

a4λ a5λ
a5λ a4λ

]

·
[

wλ

0

]

(1)

Monochromatic layer transmittance a4λ and reflectance a5λ can be expressed via
quantities kabsλ , kscatλ , gλ, ρl, ρi and ∆z. But before, first three of these quantities
must be obtained by following procedure (steps denoted by primes are for later use):

A1) Fitting of kabslλ , kscatlλ , glλ to ρl:

ln kabslλ = aabslλ

√
ρl + babslλ

ln kscatlλ = ascatlλ

√
ρl + bscatlλ

ln glλ = alλ ln ρl + blλ (2)

Values of glλ greather than 1 are truncated to 1.

A2) Fitting of kabsiλ , kscatiλ , giλ to ρi:

ln kabsiλ = aabsiλ ln ρi + babsiλ

ln kscatiλ = ascatiλ ln ρi + bscatiλ

ln giλ = aiλ ln ρi + biλ (3)

Here it must be checked that aabsiλ , ascatiλ ≥ −1. It is necessary for having finite
optical depth in ρi → 0 limit. Again, values of giλ greather than 1 are truncated
to 1.

A2’) Spectral averaging4 of asymmetry factors glλ, giλ:

gl =

∫

∆λ

glλk
scat
λ wλ dλ

∫

∆λ

kscatλ wλ dλ
gi =

∫

∆λ

giλk
scat
λ wλ dλ

∫

∆λ

kscatλ wλ dλ
(4)

A3) δ-scaling of kabslλ , kabsiλ , kscatlλ , kscatiλ :

kabslλ 7→ kabslλ

kabsiλ 7→ kabsiλ

kscatlλ 7→ kscatlλ · (1− glλ
2)

kscatiλ 7→ kscatiλ · (1− giλ
2) (5)

4All integrals were evaluated using trapezoidal rule.
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A3’) Spectral averaging of δ-scaled kabslλ , kabsiλ , kscatlλ , kscatiλ (subscript 0 denotes unsatu-
rated values):

kabs0l =

∫

∆λ

kabslλ wλ dλ
∫

∆λ

wλ dλ
kabs0i =

∫

∆λ

kabsiλ wλ dλ
∫

∆λ

wλ dλ

kscat0l =

∫

∆λ

kscatlλ wλ dλ
∫

∆λ

wλ dλ
kscat0i =

∫

∆λ

kscatiλ wλ dλ
∫

∆λ

wλ dλ

(6)

A4) Merging of liquid and ice quantities:

kabsλ =
ρlk

abs
lλ + ρik

abs
iλ

ρl + ρi
kscatλ =

ρlk
scat
lλ + ρik

scat
iλ

ρl + ρi
gλ =

ρlglλ + ρigiλ

ρl + ρi
(7)

A4’) Merging of broadband liquid and ice quantities:

kabs0 =
ρlk

abs
0l + ρik

abs
0i

ρl + ρi
kscat0 =

ρlk
scat
0l + ρik

scat
0i

ρl + ρi
g =

ρlgl + ρigi

ρl + ρi
(8)

Finally, monochromatic coefficients a4, a5 can be evaluated (index λ was omitted for
brevity):

a4 =
τ(1− ρ2)

(1− τ 2ρ2)
a5 =

ρ(1− τ 2)

(1− τ 2ρ2)
(9)

τ ≡ exp[−ε(kabs + kscat)(ρl + ρi)∆z] α1 ≡ 2[1−$(1− β)] β ≡
4 + g

8(1 + g)

ρ ≡
α2

α1 + ε
α2 ≡ 2$β $ ≡

kscat

kabs + kscat

ε ≡
√

α2
1 − α2

2

Variables (τ, ρ) in relations (9) are dimensionless auxiliary quantities, i.e. ρ has nothing
to do with density.

Having monochromatic coefficients a4λ, a5λ, monochromatic outgoing fluxes F
↓
Bλ

,

F
↑
T λ

can be evaluated using relation (1). Then they can be spectrally integrated to

get broadband fluxes F
↓
B, F

↑
T and normalized by broadband incoming flux, which gives

broadband cloud transmittance a4 and reflectance a5:

a4 =

∫

∆λ

a4λwλ dλ
∫

∆λ

wλ dλ
a5 =

∫

∆λ

a5λwλ dλ
∫

∆λ

wλ dλ
(10)

Broadband coefficients a4, a5 can be inverted to saturated coefficients kabs, kscat using
relations (9). Inversion proceeds as follows:
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• Inversion of a4, a5 to τ , ρ.

• Computation of broadband back scatter fraction β from broadband asymmetry
factor g (result of step A4’).

• Inverting ρ to $ (this is possible since β is known).

• Computation of α1, α2 from $, β.

• Inversion of τ to kext ≡ kabs + kscat.

• Splitting kext to kabs, kscat using $.

Resulting broadband coefficients kabs, kscat represent saturated values. They can be
compared with unsaturated values kabs0 , kscat0 (i.e. saturated values in ∆z → 0 limit)
obtained by step A4’.

Outputs from cloud simulation model 0 are broadband cloud transmittance a4 and
reflectance a5, as well as saturation factors cabs, cscat defined by formulas:

cabs ≡
kabs

kabs0

cscat ≡
kscat

kscat0

(11)

Central result of the work was finding that dependency of saturation factors cabs,
cscat versus unsaturated optical depth δ0 ≡ (kabs0 +kscat0 )(ρl+ρi)∆z is very sharp in solar
band, regardless of liquid/ice water content, geometrical depth or cloud inhomogenity.
It can be fitted with simple function of the type:

c =
1

1 +

(

δ0

δcrit0

)µ (12)

Here δcrit0 denotes value of δ0 for which c = 0.5 and µ is sharpness parameter.
Requirements that c → 1 as δ0 → 0 and that saturated optical depth δ increases
monotonically with δ0 restrict range of permissible µ values to 0 < µ ≤ 1.
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Figure 1: Dependency of saturation factors cabs (left) and cscat (right) on unsaturated
optical depth δ0 in solar band. Sample of homogeneous clouds. Red dots – liquid clouds,
blue dots – ice clouds, black dots – mixed clouds, black lines – fitted dependencies.
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Figure 2: Dependency of saturation factors cabs (left) and cscat (right) on unsaturated
optical depth δ0 in thermal band. Sample of homogeneous clouds. Red dots – liquid
clouds, blue dots – ice clouds, black dots – mixed clouds, black lines – fitted depen-
dencies.

In thermal band dependency of cabs, cscat on δ0 loses its sharpness for δ0 & 1. But this
does not pose a serious problem since in this case fluxes are already close to blackbody
radiation.

Remarks:

1. Scalings for fits (2), (3) were found by trial and error. In order to have robust fitting
procedure, it was decided to use linear relations between scaled monochromatic
quantities and scaled liquid/ice water content. Optimal scalings were judged by
looking at dependency of scaled broadband quantities, which should be as close to
linear as possible.

2. For some wavelengths single scattering albedo $ can be 1, which means kabs = 0.
To treat such cases ln(kabs) in fits (2), (3) was replaced by ln[max(kabs, ε)] with
ε = 10−5.

3. Inversion from a4, a5 to τ , ρ can cause numerical problems for a4 ≈ 0 (this
happens for thick clouds in thermal band). In such cases inverse formulas for
τ and ρ were approximated by their truncated power series in a4. Cases a4 = 0
(with machine precision) were ignored, since they would lead to infinite value of
extinction coefficient kext, which is unphysical.

4. In model ALARO-0 broadband coefficients kabs0l , kabs0i , kscat0l , kscat0i (resp. gl, gi) will
not be determined via steps A1–A3, A3’ (resp. A1, A2, A2’). This would be
too costly, moreover it would require having monochromatic cloud data in the
model. Instead, results of these procedures will be fitted directly to ρl, ρi for wide
range of their values, using Pade approximants with suitable scalings. So far only
preliminary Pade approximants were found. They are not fully satisfactory for
thermal scattering case, as can be seen from the right plot on figure 2 (there is
a separation between liquid and ice clouds for δ0 ¿ 1 and saturation factor cscat

does not tend exactly to 1 as δ0 → 0 neither for liquid, nor for ice clouds).
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5 Cloud simulation model 1

Cloud simulation model 1 performs monochromatic computations for non-homogeneous
multi-layer cloud, taking into account cloud geometry. Individual cloud layers are
assumed homogeneous, with liquid water content ρlj, ice water content ρij, geometrical
thickness ∆zj and cloud fraction nj. Optical properties of each layer are computed in
the same way as for homogeneous cloud. Overlaps between adjacent cloud layers can be
either random or maximum5. Again, it is assumed that in each spectral band cloud is
illuminated from the top by diffuse radiation with spectral composition given by weight
function wλ.

For each layer j = 1, . . . , J (numbering starts from the top) there are 2 systems
relating incoming and outgoing fluxes. One for cloud free part F, the other for cloudy
part C:

[

F
↓F
Bλ

F
↑F
Tλ

]

j

=

[

1 0
0 1

]

·
[

F
↓F
Tλ

F
↑F
Bλ

]

j
[

F
↓C
Bλ

F
↑C
Tλ

]

j

=

[

a4λ a5λ
a5λ a4λ

]

j

·
[

F
↓C
Tλ

F
↑C
Bλ

]

j

(13)

At layer interfaces, fluxes leaving one layer must be redistributed between cloudy and
cloud free parts of the next layer:

[

F
↓F
Tλ

F
↓C
Tλ

]

j

=

[

b1 1− b3
1− b1 b3

]

j

·
[

F
↓F
Bλ

F
↓C
Bλ

]

j−1
[

F
↑F
Bλ

F
↑C
Bλ

]

j

=

[

b2 1− b4
1− b2 b4

]

j

·
[

F
↑F
Tλ

F
↑C
Tλ

]

j+1

(14)

Redistribution weights b1j, b2j, b3j, b4j depend on cloud overlapping mode. They can be
expressed as:

random overlaps maximum overlaps

b1j 1− nj
1−max(nj ,nj−1)

1−nj−1
(1 for nj−1 = 1)

b2j 1− nj
1−max(nj ,nj+1)

1−nj+1
(1 for nj+1 = 1)

b3j nj
min(nj ,nj−1)

nj−1
(1 for nj−1 = 0)

b4j nj
min(nj ,nj+1)

nj+1
(1 for nj+1 = 0)

System (13), (14) is completed with boundary conditions:

(F ↓FTλ )1 = (1− n1)wλ (F ↓CTλ )1 = n1wλ

(F ↑FBλ)J = 0 (F ↑CBλ)J = 0
(15)

5More distant cloud layers are independent to the extent allowed by requirement of maximum
overlaps between adjacent layers.
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By elimination of incoming fluxes between layers, equations (13), (14), (15) can be
compacted into 3-diagonal system with blocks consisting of 4× 4 matrices (subscript λ

was omitted for brevity):



















B1 C1

A2 B2 C2

A3 B3 C3

. . . . . . . . .

AJ−1 BJ−1 CJ−1

AJ BJ



















·



















F1

F2

F3

...
FJ−1
FJ



















=



















S1
S2
S3
...

SJ−1
SJ



















(16)

Aj =









−b1j 0 −(1− b3j) 0
0 0 0 0

−a4j(1− b1j) 0 −a4jb3j 0
−a5j(1− b1j) 0 −a5jb3j 0









Bj =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









S1 =









(1− n1)w
0

a41n1w

a51n1w









Cj =









0 0 0 0
0 −b2j 0 −(1− b4j)
0 −a5j(1− b2j) 0 −a5jb4j
0 −a4j(1− b2j) 0 −a4jb4j









Fj =











F
↓F
Bj

F
↑F
Tj

F
↓C
Bj

F
↑C
Tj











S2 = · · · = SJ = 0

System (16) can be solved by elimination and back-substitution:

B̃1 = B1 S̃1 = S1
B̃j = Bj − AjB̃

−1
j−1Cj−1 S̃j = Sj − AjB̃

−1
j−1S̃j−1 j = 2, . . . , J

FJ = B̃−1J S̃J

Fj = B̃−1j (S̃j − CjFj+1) j = J − 1, . . . , 1 (17)

Results from cloud simulation model 1 are outgoing monochromatic fluxes for cloud
free part F and cloudy part C of each layer. At cloud bottom and top they are summed
together (F + C) and spectrally integrated, in order to get total broadband outgoing
fluxes. These are normalized by total broadband incoming flux, giving broadband cloud
transmittance a4 and reflectance a5.

Remark:

For multi-layer cloud with geometry it is possible to define global saturation factors cabs,
cscat by requirement that cloud with broadband optical coefficients

kabsj = cabskabs0j

kscatj = cscatkscat0j

j = 1, ..., J

gives the same total broadband outgoing fluxes as the reference cloud computed
monochromatically. Unlike homogeneous case, inversion from cloud a4, a5 to cabs, cscat

must be done numerically, which makes this procedure very costly.
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6 Outline of the new parameterization

New parameterization of cloud optical properties is based on fits (12) obtained for
homogeneous cloud sample. Remaining problem is how to generalize unsaturated optical
depth δ0 to multi-layer case with geometry. It was decided not to apply saturation
correction globally for whole cloud, but separately for each cloud layer. This can be
achieved by above–central–below decomposition based on two steps:

B1) For each cloud layer, cloud layers above/below are transformed into equivalent
homogeneous “rectangular” cloud. Transformation is based on purely geometrical
considerations, conserving the total mass of liquid/ice water and moist air inside

the cloud. It is therefore common for both spectral bands. Result is a 3-layer
cloud composed of these homogeneous layers:

cloud above . . . (a)
central layer . . . (c)
cloud below . . . (b)

Conservation of total liquid/ice water mass leads to the relation for liquid/ice
water path in equivalent cloud:

ρl|i∆z =
1

agn

∑

k

nk(ql|i)k∆pk
cloud above: k = jmin, . . . , j − 1
cloud below: k = j + 1, . . . , jmax

(18)

Index j denotes central layer, jmin and jmax are the first and the last layer with
non-zero cloud fraction, ag is gravity acceleration, n is mean cloudiness for the
cloud above/below, (ql|i)k is specific mass of liquid/ice water for layer k and ∆pk
is pressure difference across the layer.

In order to include effect of cloud geometry, mean cloudiness n is not computed
as simple arithmetic average of nk (this would give the same result for maximum
and random overlaps), but rather as:

n =

∑

k

nk−1,k

∑

k

1

cloud above: k = jmin + 1, . . . , j − 1
cloud below: k = j + 2, . . . , jmax

(19)

Quantity nk−1,k denotes total cloudiness for layers k − 1 and k, so it depends on
cloud overlapping mode. If the cloud above/below is composed of isolated parts
separated by two or more cloud free layers, its mean cloudiness n will be reduced.
This mechanism should at least partially simulate effect of gases, due to which
there is weaker saturation when the cloud layers are separated.

The last step needed to get liquid/ice water content of equivalent cloud above/
below is to determine its geometrical depth ∆z. It can be obtained from
conservation of moist air mass inside the cloud. Assumption that equivalent cloud
has the same moist air density as central layer j gives:

∆z =
RjTj

pj

1

agn

∑

k

nk∆pk
cloud above: k = jmin, . . . , j − 1
cloud below: k = j + 1, . . . , jmax

(20)
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Quantity Rj is gas constant of moist air for central layer j, Tj is temperature and
pj is pressure.

B2) For resulting 3-layer cloud effective δ0 is computed as:

δeff0 ≡
naδ0a + ncδ0c + nbδ0b

n
(21)

Here n is total cloudiness of the 3-layer cloud, depending on cloud fractions na,
nc, nb and cloud overlapping mode:

random overlaps: 1− n = (1− na)(1− nc)(1− nb)

maximum overlaps: 1− n =
[1−max(na, nc)][1−max(nc, nb)]

1− nc

In case of trivial geometry na = nc = nb = n (for random overlaps it means n = 1),
formula (21) reduces to sum of optical depths, which is required behaviour. On
the other hand, since nrand ≥ nmax, optical depth δeff0 will be smaller for random
overlaps, leading to weaker saturation. This is also desired behaviour, since mean
geometrical thickness of the cloud is smaller for random overlaps.

Proposed new parameterization of cloud optical properties can be summarized now:

• loop through layers
• determine ρl|i, ∆z and n for equivalent cloud above/below
• loop through spectral bands
• loop through a–c–b
• determine broadband optical coefficients kabs0l , kabs0i , kscat0l , kscat0i , gl and gi using
Pade approximants
•merge liquid and ice quantities to kabs0 , kscat0 and g using formulas (8)
• compute unsaturated optical depth δ0
• end of loop through a–c–b
• compute total cloudiness n for 3-layer cloud a–c–b
• compute δeff0 using formula (21)
• determine saturation factors cabs, cscat using fits (12)
• for central layer compute saturated coefficients kabs, kscat and convert g to β

• end of loop through spectral bands
• end of loop through layers

7 Preliminary results

So far, new parameterization scheme was tested only for sample of homogeneous clouds
and for limited samples of 3-layer non-homogeneous clouds and 3-layer clouds with
geometry (i.e. step B1 was not needed). Cloud simulation models 0 and 1 were used
as reference. Evaluation of the new scheme was based on scatterplots of parameterized
versus reference broadband cloud transmittance a4 and reflectance a5. New scheme
gives encouraging results compared to the old one (see figures 3–6), but it must be
remembered that they were obtained in idealized framework neglecting effect of gases.
Because of this, performance in full model will be somewhat deteriorated.
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Figure 3: Parameterized versus reference cloud transmittance a4 for old scheme (left)
and new scheme (right). Sample of homogeneous clouds, solar band.
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Figure 4: Parameterized versus reference cloud reflectance a5 for old scheme (left) and
new scheme (right). Sample of homogeneous clouds, solar band.
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Figure 5: Parameterized versus reference cloud transmittance a4 for old scheme (left)
and new scheme (right). Sample of homogeneous clouds, thermal band.
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Figure 6: Parameterized versus reference cloud reflectance a5 for old scheme (left) and
new scheme (right). Sample of homogeneous clouds, thermal band.

8 Remaining work

1. Implementation of complete parameterization scheme (including the step B1) and
testing it for J > 3.

2. Coding final form of parameterization scheme for ALARO-0.

3. Improving the Pade approximants for kabs0l , kabs0i , kscat0l , kscat0i , gl and gi, especially
for scattering coefficients in thermal band.

4. Writing a detailed report.
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