Dynamics & Coupling 2006 fulfilment and plan for 2007

Filip Váňa

filip.vana@chmi.cz

CHMI

8th LSC meeting, Ljubljana – p. 1

Plan for 2006

Project	Торіс	Planned/Fulfilled effort	LACE support
I.	Iterative schemes	0/0	
	Further improvement of NH	1.5/0	
	Diabatic forcing	0/0	
	VFE	3/5	1/1
	BBC	-/0.5	
II.	Studies linked to high resolution	0/0	
	Horizontal pressure gradient term	0.5/0.5	
	HD above slopes	0/0	
	RUBC	0/0	
	Phys. coupling to dynamics	1.5/1.5	1/1
	Spline interpolation for SL	1.5/1.75	1/1
	TL/AD of the plane SL	5/6	
	SLHD	-/1	
III.	3D diagnostic tool for coupling	1.5/1.5	1/1
	Spectral coupling	0/0	
	Total:	14.5/17.75	4/4

• VFE scheme successfully implemented into the HY model (Untch and Hortal)

- VFE scheme successfully implemented into the HY model (Untch and Hortal)
- Is it extensible to the NH dynamics? (Bénard compatibility and Vivoda stability)

- VFE scheme successfully implemented into the HY model (Untch and Hortal)
- Is it extensible to the NH dynamics? (Bénard compatibility and Vivoda stability)
- The only non-local operations in the vertical are integrations in HY dynamics (SL version). In NH dynamics also derivatives plays important role (structure equation contains vertical laplacian).

- VFE scheme successfully implemented into the HY model (Untch and Hortal)
- Is it extensible to the NH dynamics? (Bénard compatibility and Vivoda stability)
- The only non-local operations in the vertical are integrations in HY dynamics (SL version). In NH dynamics also derivatives plays important role (structure equation contains vertical laplacian).
- First version of VFE implemented to the code. It is stable, efficient (2-3 % extra CPU) but (for the moment) noisy.

- VFE scheme successfully implemented into the HY model (Untch and Hortal)
- Is it extensible to the NH dynamics? (Bénard compatibility and Vivoda stability)
- The only non-local operations in the vertical are integrations in HY dynamics (SL version). In NH dynamics also derivatives plays important role (structure equation contains vertical laplacian).
- First version of VFE implemented to the code. It is stable, efficient (2-3 % extra CPU) but (for the moment) noisy.
- Plan to implement VFE without major revision of the NH core.

NLNH02	test
--------	------

perturbation of V-wind [m/s], NSTEP = +0500 2TL ICI NESC scheme NSITER=1

TSTEP test: 5	5 2TL IO	CI NESC	sc
LVERTFE	=FALSE		
LVFE_LAPL_FD	=FALSE		
LVFE_UVH_FD	=FALSE		
LVFE_GW_FD	=FALSE		
NVSCH	= 3		
NVDER	= 3		

NLNH02	test
--------	------

perturbation of V-wind [m/s], NSTEP = +0500 TSTEP test: 5 2TL ICI NESC scheme NSITER=1 LVERTFE =TRUE LVFF_LAPL_FD =FALSE

LVFE_UVH_FD =FALSE LVFE_GW_FD =FALSE NVSCH =3 NVDER =3

NLNH02	test
--------	------

perturbation of V-wind [m/s], NSTEP = +0500 2TL ICI NESC scheme NSITER=1

TSTEP test: 5	5	2TL	ICI	NESC	sch
LVERTFE	=	FALS	ΕE		
LVFE_LAPL_FD	=	FALS	ΞE		
LVFE_UVH_FD	=	FALS	ΞE		
LVFE_GW_FD	=	FALS	ΞE		
NVSCH	=	3			
NVDER	=	3			

NLNH02 test

perturbation of V-wind [m/s], NSTEP = +0500 TSTEP test: 5 2TL ICI NESC scheme NSITER=1 LVERTFE =TRUE LVFE_LAPL_FD =FALSE LVFE_LAPL_BC_FD =TRUE LVFE_GM_FD =TRUE LVFE_GM_FD =TRUE

NVSCH

NVDER

=3 =3

BBC T2m differences (model - noHD)

• Original SLHD tuning

BBC T2m differences (model - noHD)

- Original SLHD tuning
- Spectral diffusion

BBC T2m differences (model - noHD)

- Original SLHD tuning
- Spectral diffusion
- New SLHD tuning

BBC - II.

vertical divergence spectra

43th model level (the lowest)

Phys-dyn coupling

Phys-dyn coupling II

Phys-dyn coupling II

8th LSC meeting, Ljubljana – p. 8

Motivation: SLHD affects conservative properties of the model \Rightarrow need to an improvement of the SL interpolators accuracy.

MSL pressure RMSE and BIAS for 15 days of parallel run

Motivation: Performance of the local splines is not superior to the Lagrangian cubic interpolation in SL.

Bubble test, after 10 minutes

init_102_wcb2_eta, eta-coordinate master_al29t2mxl_02_sx6, (A1, A2) = (0, 0), .NOT.LQM NH sl2tl, (NPDVAR, NVDVAR) = (2, 3), NSITER = 1, LPC_FULL, LPC_NESC, LGWADV .NOT.LQM[x], .NOT.LQMH[x], LRSPLINE_[x], N[x]LAG = 3 TSTEP = 5.0 s DELY = 10 m DELZ = 10 m P00 = 101325 Pa THETA00 = 300 K SIPR = 90000 Pa SITR = 350 K SITRA = 100 K RRDXTAU = 0

WARM + COLD BUBBLE TEST perturbation of potential temperature [K], NSTEP = +0120

	min:	-10.645
	max:	1.8519
GMI 2006 Aug 4 18:46:16 experiment: C01	o step:	0.12

• Linear

Bubble test, after 10 minutes

init_102_wcb2_eta, eta-coordinate master_al29t2mxl_02_sx6, (A1, A2) = (-1/3, 1/2), .NOT.LQM NH sl2tl, (NPDVAR, NVDVAR) = (2, 3), NSITER = 1, LPC_FULL, LPC_NESC, LGWADV .NOT.LQM[x], .NOT.LQMH[x], LRSPLINE_[x], N[x]LAG = 3 TSTEP = 5.0 s DELY = 10 m DELZ = 10 m P00 = 101325 Pa THETA00 = 300 K SIPR = 90000 Pa SITR = 350 K SITRA = 100 K RRDXTAU = 0

WARM + COLD BUBBLE TEST perturbation of potential temperature [K], NSTEP = +0120

			-3./903
		max:	2.34
GM 2006 Aug 4 15:46:50) experiment: C000	step:	0.12

- Linear
- Lagrangian cubic

WARM + COLD BUBBLE TEST perturbation of potential temperature [K], NSTEP = +0120

Bubble test, after 10 minutes

init_102_wcb2_eta, eta-coordinate master_al29t2mxl_02_sx6, (A1, A2) = (-7/15, 4/5), .NOT.LQM NH sl2tl, (NPDVAR, NVDVAR) = (2, 3), NSITER = 1, LPC_FULL, LPC_NESC, LGWADV .NOT.LQM[x], .NOT.LQMH[x], LRSPLINE_[x], N[x]LAG = 3 TSTEP = 5.0 s DELY = 10 m DELZ = 10 mP00 = 101325 Pa THETA00 = 300 K SIPR = 90000 Pa SITR = 350 K SITRA = 100 K RRDXTAU = Ω

	т •
	1100r
-	

- Lagrangian cubic
- Splines

	min:	-9.616
	max:	12.39
CIVIT 2006 Aug 5 15:31:48 experiment: C004	step:	0.12

WARM + COLD BUBBLE TEST perturbation of potential temperature [K], NSTEP = +0600 Bubble test, after 10 minutes

init_102_wcb2_eta, eta-coordinate
master_al29t2mxl_02_sx6
NH euler, (NPDVAR, NVDVAR) = (2, 3), NSITER = 1, LPC_OLD
TSTEP = 1.0 s
DELY = 10 m DELZ = 10 m
P00 = 101325 Pa THETA00 = 300 K
SIPR = 90000 Pa SITR = 250 K SITRA = 250 K
RRDXTAU = 0

GMT 2006 Aug 4 20:05:50 experiment: C900

min: -62.434 max: 16.339

step:

0.12

- Linear
- Lagrangian cubic
- Splines
- Eulerian adv.

Family of two parametric cubic interpolators

$$\begin{split} \mathbf{F}(\mathbf{x},\mathbf{y}) &= \mathbf{w}_0(\mathbf{x})\mathbf{y}_0 + \mathbf{w}_1(\mathbf{x})\mathbf{y}_1 \\ &+ \mathbf{w}_1(1-\mathbf{x})\mathbf{y}_2 + \mathbf{w}_0(1-\mathbf{x})\mathbf{y}_3 \end{split}$$

where

$$\begin{array}{rcl} \mathbf{w_0}(\mathbf{x}) &=& \mathbf{a_1x} + \mathbf{a_2x^2} - (\mathbf{a_1} + \mathbf{a_2})\mathbf{x^3} \\ \mathbf{w_1}(\mathbf{x}) &=& \mathbf{1} + (\mathbf{a_2} - \mathbf{1})\mathbf{x} - (\mathbf{3a_1} + \mathbf{4a_2})\mathbf{x^2} + \\ && \mathbf{3}(\mathbf{a_1} + \mathbf{a_2})\mathbf{x^3} \end{array}$$

Dimensionless damping rate

Damping factor for N = 100, m = 10

Damping factor for N = 100, m = 40

TL/AD of the ALADIN SL Convergence for the TL code (e501):

$$\lim_{\epsilon \to 0} \frac{M(x + \epsilon \delta x) - M(x)}{\mathcal{M}'(\epsilon \delta x)}, \quad \epsilon = \epsilon_0 10^{\lambda}$$

	Eulerian advection Δt =120s	SL advection Δt =450s
$\lambda = 0$	RAT = 0.9685219082957116E+00	RAT = 0.1094034387101322E+01
λ = -1	RAT = 0.9970618603595810E+00	RAT = 0.1008012195504008E+01
λ = -2	RAT = 0.9997073040468342E+00	RAT = 0.1002141025110223E+01
$\lambda = -3$	RAT = 0.9999707398884352E+00	RAT = 0.1000160788422592E+01
λ = -4	RAT = 0.9999970679271253E+00	RAT = 0.1000099605664519E+01
λ = -5	RAT = 0.9999995490240665E+00	RAT = 0.1000001139215519E+01
λ = -6	RAT = 0.9999987045356886E+00	RAT = 0.1000001847670018E+01
λ = -7	RAT = 0.9999936488857756E+00	RAT = 0.1000041939684409E+01
λ = -8	RAT = 0.9999533728917936E+00	RAT = 0.1000246087384355E+01
λ = -9	RAT = 0.9991377690586460E+00	RAT = 0.9994838411148169E+00
λ = -10	RAT = 0.9970808134568164E+00	RAT = 0.1032182685987080E+01

TL/AD of the ALADIN SL

Test of the adjoint code (e401):

Eulerian advection (1 hour, $\Delta t = 120$ s)

TEST OF THE ADJOINT

12345678901234567890

< F(X), Y > = -.90189924198410820200E-02

< X , F*(Y) > = -.90189924198410612030E-02

THE DIFFERENCE IS 10.395 TIMES THE ZERO OF THE MACHINE

SL advection (1 hour, $\Delta t = 120$ s)

TEST OF THE ADJOINT

12345678901234567890

< F(X) , Y > = -.66041517403842070130E-02

< X , F*(Y) > = -.66041517403841827300E-02

THE DIFFERENCE IS 16.562 TIMES THE ZERO OF THE MACHINE

SL advection (1 hour, $\Delta t = 360$ s)

TEST OF THE ADJOINT 12345678901234567890 < F(X) , Y > = -.71646146174093533820E-02 < X , F*(Y) > = -.71646146174093447100E-02 THE DIFFERENCE IS 5.452 TIMES THE ZERO OF THE MACHINE

TL/AD of the ALADIN SL Adjoint code optimization • Support for vector platforms • Vectorization of ZPP=0.loops DO JROF = KSTART, KPROF . . . ZPP= ZPP+ ZNORDY5(JROF)*PO(JROF,JLEV) . . . ZPP=0.ENDDO

- Support for vector platforms
 - Vectorization of

loops

DO JROF = KSTART, KPROF

• • •

ZPP=ZNORDY5(JROF)*PO(JROF,JLEV)

• • •

ENDDO

DO JINC=ISTART, ISTOP

PSLBUF1(INC(JINC, JROF)) = &

& PSLBUF1(INC(JINC,JROF)) + &

& ZINC(JINC, JROF)

ENDDO

- Support for vector platforms
 - Vectorization of loops
 - Specific LAM development for LVECADIN option

DO JINC=ISTART, ISTOP

PSLBUF1(INC(JINC, JROF)) = &

& PSLBUF1(INC(JINC,JROF)) + &

& ZINC(JINC, JROF)

ENDDO

- Support for vector platforms
 - Vectorization of loops
 - Specific LAM development for LVECADIN option

V.Op.Ratio = 98.814048 %

VLEN = 225.948825

- Support for vector platforms
 - Vectorization of loops
 - Specific LAM development for LVECADIN option

MPI:

TL/AD of the ALADIN SL Adjoint code optimization

LIMP_NOOLAP=.TRUE.,

LSLONDEM=.TRUE.

- Support for vector platforms
 - Vectorization of loops
 - Specific LAM development for LVECADIN option
- Parallel processing
 - MPI

- Support for vector platforms
 - Vectorization of loops
 - Specific LAM development for LVECADIN option
- Parallel processing
 - MPI
 - OpenMP

OpenMP: extra care for YOMOML module during compilation

• Based on perfect model approach (Elía et al., 2002) using the same LAM on two domains with the same resolution and matching grid-points.

- Based on perfect model approach (Elía et al., 2002) using the same LAM on two domains with the same resolution and matching grid-points.
- Jump in resolution between driving and nested LAM is simulated by spectral filtering.

- Based on perfect model approach (Elía et al., 2002) using the same LAM on two domains with the same resolution and matching grid-points.
- Jump in resolution between driving and nested LAM is simulated by spectral filtering.
- Performance of coupling is judged according 10 days normalized RMSE difference (from reference solution) of vorticity field at 500 hPa.

CMI 2006 Dec 7 0938#1 B100-4000

CMI 2006 Dec 7 09:38:41 B100-4000

CMT 2006 Dec 7 09:38:45 8300-4000

CMI 2006 Dat 7 0938#1 B100-4000

CMI 2006 Dec 7 09:38:45 8300-4000

CMI 2006 Dec 7093850 83054000

CMT 2006 Dec 7 09:38:45 8300-4000

CMI 2006 Dat 7093850 836-4000

CMI 2006 Dec 7 0938#1 B100-4000

CMI 2006 Dec 709:38:50 8305-4000

Time evolution of vorticity RMSE at 500 hPa level Sensitivity to coupling frequency

coupling frequency 1 h

vvvv coupling frequency 1 timestep

GMT 2006 Dec 7 10:45:29

Diagnostic tool for lat. coupling Time evolution of vorticity RMSE at 500 hPa level Time evolution of vorticity RMSE at 500 hPa level Sensitivity to coupling frequency 0.14 0.8 0.7 0.12 0.6 normalized vorticity RMSE [1] normalized vorticity RMSE [1] 0.5 0.4 0.3 0.2 0.02 0.1 0.00 0.0 2 3 56 7 8 9 10 11 12 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 0 1 4 0 forecast range [h] forecast range [h] coupling frequency 3 h coupling frequency 3 h A A A A A Coupling frequency 1 h coupling frequency 1 h • vvvv coupling frequency 1 timestep GMT 2006 Dec 7 10:45:29 GMT 2006 Dec 7 12:54:32

8th LSC meeting, Ljubljana – p. 18

Plan for 2007

Project	Торіс	Planned effort	LACE support
I.	VFE	7.5	2
II.	SLHD above orography	1.5	
	RUBC	1.5	
	New interpolators for SL	4	2
	Phys. coupling to dynamics	2	1
	TL/AD of plane SL	1	
	TL/AD of SLHD	3.5	
	Thermodynamic consistency	2	
III.	Alternative LBC formulation	2	
	Spectral coupling	2	
	Total:	27	5

SLHD above orography

24h accumulated precipitation over Austria for the 23/06/2006

Ingredients:

• Boyd (2005)

Ingredients:

- Boyd (2005)
- SL advection

Ingredients:

- Boyd (2005)
- SL advection
- SLHD

