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Abstract

Currently HY and NH dynamical cores forms two different worlds
in the dynamical core. Recently Voitus showed that the spectral com-
putations of NH model can be treated as departure from HY model.
The same approach can be adopted for all grid point computations.
We can introduce new quantity ε that will control non-hydrostaticity
of dynamical core (ε = 1 NH core, ε = 0 HY core).
ε can be vertically dependent. It allow us to supress non-hydrostatism
close to model top where vertical resolution is too coarse to properly
sample NH processes. NH close to model top causes problems with
stability for years.
In this memo I formulate model with ε and I propose reformulation of
dynamics.

1 Methodology

Our aim was to introduce control paramatere ε = ε(η) in such a way that
we can control hydrostaticity in upper part of model domain. The way how
to define such parameter is not unique. We require that for ε = 0 system
will be hydrostatic in whole domain and for ε = 1 system will provide non-
hydrostatic solution. The mixed state in between is not physically defined,
it can be any system that satisfies limit cases.

Our first attempts were based on the fact that we have hydrostatic pres-
sure π available in our system. In the case of HY model the true pressure
p = π. In NH model, the true pressure p is defined via diagnostic relation
p = πeq̂ and the time change of true pressure dp

dt = ṗ is given

ṗ

p
=
π̇

π
+ ˙̂q =

ω

π
+ ˙̂q. (1)

Natural idea how to control hydrostaticity is to limit values of q̂ in one
of the following ways
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1. p = πeεq̂

2. p = π + επ
(
eq̂ − 1

)
.

However, it can be easily showed that such definitions leads to singular-
ity when ε = 0. Prognostic euation for q̂ than becomes diagnostic one for
D3 term that appears in equation for T .

Therefore we look for different way to introduce parameter ε. We finally
found the way that we present in this report. It would be difficult to give
explanation with physically relevant reasoning.

2 Nonlinear model

We use prognostic quantities of model ALADIN ~v, T, qs = ln(πs), w, q̂ =
ln( pπ ).

We start with the definition of mass coordinate π (lets call it hydrostatic
pressure in the presence of gravity)

∂φ

∂π
= −RT

p
. (2)

We rewrite definition of π in η and we introduce ε parameter that controls
NH part of relation.

∂φ

∂η
= −mRT

p
= −mRT

π
− ε
(
π

p
− 1

)
mRT

π
. (3)

with p
π = eq̂ and π

p − 1 = 1−eq̂
eq̂

.

Evolution of T is defined in the following way

dT

dt
= (1− ε2)κTω

π
− ε2RT

cv
D3. (4)

The reason why the square ε2 appears in T equation will become clear
during elimination of SI linear system. Such definition allows to keep max-
imum consistency with already existing system.

Evolution of q̂ is defined as

dq̂

dt
= −ε

(
cp
cv
D3 +

ω

π

)
. (5)

Horizontal momentum equation in non-rotating frame (coriolis terms not
included) in η coordinate gives
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d~v
dt = −RT ~∇π

π − ~∇φ

+ε
(
−RT ~∇q̂ −

(
1
m
∂p
∂η − 1

)
~∇φ
) (6)

We would like to emphasize at this moment that term
(

1
m
∂p
∂η − 1

)
~∇φ

is highly nonlinear ans it has no equivalent terms in current SI operator.
There is hidden NH term inside ~∇φ as computation of geopotential itself
contains ε parameter (see [11]).

Vertical momentum equation gives

dgw

dt
= εg2

(
1

m

∂p

∂η
− 1

)
(7)

in both equations above 1
m
∂p
∂η − 1 = eq̂ − 1 + p

m
∂q̂
∂η .

We use prognostic quantity d in spectral space due to stability reasons
(the same reasons why we use horizontal divergence and vorticity instead
wind components). If we introduce ε in the previous way into w equation
than nonlinear evolution of d is given by equation

dd

dt
= −g2 p

mRT

∂

∂η

[
ε

1

m

∂(p− π)

∂η

]
+ ... (8)

We write only leading vertical laplacian term, which has conuterpart in
SI system. For complete equation see documentation of NH equation [2.37].

The question to be exploited is, if so called X-term shall also involve ε
or not.Remanins to be explored.

Following set of equations summarizes our nonlinear system.

∂qs
∂t = − 1

πs

∫ 1
0
~∇(m~v)dη

dT
dt = κTω

π − ε
2
(
κTω
π + RT

cv
D3

)
d~v
dt = −RT ~∇π

π − ~∇φ− ε
[
RT ~∇q̂ +

(
1
m
∂p
∂η − 1

)
~∇φ
]

dgw
dt = εg2

(
1
m
∂p
∂η − 1

)
dq̂
dt = −ε

(
cp
cv
D3 + ω

π

)
(9)

Black terms are HY system and red terms represents NH increment to
original HY system. When ε = 0 we obtain hydrostatic set of equations.

The system is closed with diagnostic relations
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ω = ~v~∇π −
∫ η

0

~∇ (m~v) dη (10)

φ = φs −
∫ 1

η

mRT

π
dη
′

−
∫ 1

η
ε

(
π

p
− 1

)
mRT

π
dη
′

(11)

D3 = D + d (12)

d = − p

RT

1

m

∂gw

∂η
+ ε3

p

RT
~∇φ 1

m

∂~v

∂η
(13)

The paramater ε3 is applied X-term and it has no counterpart in SI linear
system.

3 Linear mode and elimination of variables I.

When [9] is linearized around bi-isothermal, resting, horizontally homogen-
nous state defined by T ∗, Ta

∗πs
∗ we obtain following set of linearized equa-

tions

∂qs
∂t = −N∗D
∂T
∂t = −κT ∗S∗D + ε2

[
κT ∗S∗D − RT ∗

Cv
(D + d)

]
∂D
∂t = −RG∗4T −RT ∗4qs −4φs

+RT ∗(G∗ − 1)ε4q̂
∂d
∂t = − g2

RTa∗
L∗v q̂

∂q̂
∂t = −εCp

Cv
(D + d) + εS∗D.

(14)

The operators S∗,G∗,N∗,L∗v are defined as

G∗X =
∫ 1
η
m∗

π∗ Xdη

S∗X = 1
π∗

∫ η
0 m

∗Xdη

N∗X = 1
πs∗

∫ 1
0 m

∗Xdη

L∗vX = π∗

m∗
∂
∂η

[
ε
(
π∗

m∗
∂
∂η + 1

)]
X

Here we perform detailed elimination assuming that parameter ε = ε(η)
can vary in vertical.
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We apply time derivatie on D equation and we take into account that
φs, ε, T

∗, R are time indepenedent. I work with the assumption that ε is
inside geopotential integral in NL system.

∂2D
∂t2

= −RG∗4∂T
∂t −RT

∗4∂qs
∂t +RT ∗(G∗ − 1)ε4∂q̂

∂t
(15)

and we subsitute from [38]. We obtain

∂2D
∂t2

= −RG∗4
{
−κT ∗S∗D + ε2

[
κT ∗S∗D − RT ∗

Cv
(D + d)

]}
−RT ∗4{−N∗D}

+RT ∗(G∗ − 1)ε4
{
−εCp

Cv
(D + d) + εS∗D

} (16)

after manipulation and taking into account gH∗ = RT ∗ we can write

∂2D
∂t2

= −gH∗G∗
{
−κS∗4D + ε2

[
κS∗4D − R

Cv
(4D +4d)

]}
−gH∗ {−N∗4D}

+gH∗(G∗ − 1)ε
{
−εCp

Cv
(4D +4d) + εS∗4D

} (17)

After additional manipulation we obtain

∂2D
∂t2

= gH∗κG∗S∗4D + gH∗N∗4D

−gH∗κG∗ε2S∗4D

+gH∗ RCv
G∗ε24D + gH∗ RCv

G∗ε24d

−gH∗Cp

Cv
G∗ε24D + gH∗

Cp

Cv
ε24D

−gH∗Cp

Cv
G∗ε24d+ gH∗

Cp

Cv
ε24d

+gH∗G∗ε2S∗4D − gH∗ε2S∗4D.

(18)

First two terms are HY terms. Additional terms are NH departure and
taking into account c∗2 =

Cp

Cv
RT ∗ and

Cp

Cv
− R

Cv
= 1 and R

Cp
= 1− Cv

Cp

∂2D
∂t2

= gH∗κG∗S∗4D + gH∗N∗4D

+gH∗
(
Cv
Cp

G∗ε2S∗ −G∗ε2 − ε2S∗
)
4D

+gH∗
(
R
Cp

G∗ε2S∗ − R
Cp

G∗ε2S∗ + ε2sN
∗ − ε2sN∗

)
4D

+c∗2ε24D

+(−gH∗G∗ + c∗2)ε24d

(19)
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We showed already in 2006 (report of Vivoda) that

A∗1 := G∗S∗X −G∗X − S∗X + N∗X = 0

has analogous relation when vertically dependent function τ is considered

A∗1 := G∗τ(η)S∗X −G∗τ(η)X − τ(η)S∗X + τsN
∗X = G∗

π∗

m∗
∂τ(η)

∂η
S∗X.

(20)
In order to employ previous relation we added red terms in [44]. After

manipulations and using [45] with τ = ε2 we obtain

∂2D
∂t2

= gH∗ (κG∗S∗ + N∗)4D

+
[
gH∗

(
A∗1 − κG∗ε2S∗ − ε2sN∗

)
+ c∗2ε2

]
4D

+(−gH∗G∗ + c∗2)ε24d

(21)

The same procedure we repeat with equation for vertical divergence

∂2d
∂t2

= 1
rH∗2

L∗v
(
−gH∗εS∗ + c∗2ε

)
D + c∗2 1

rH∗2
L∗vεd (22)

with r = Ta∗

T ∗ , c∗2 =
cp
cv
RT ∗ and H∗ = RT ∗

g .

We can noticed that for ε = 0 we obtain from [46] HY Helmholtz equation

∂2D
∂t2

= gH∗ (κG∗S∗ + N∗)4D (23)

and for the ε = 1 NH equation as reported by Benard (NH documenta-
tion).

∂2D
∂t2

=
(
−gH∗A∗1 + c∗2

)
4D +

(
−gH∗G∗ + c∗2

)
4d (24)

When system is discretized in time and in vertical direction, we can
follow steps reported in Voitus report. Our implicit system to be solved is

qs − δt
(
−N∗m2D

)
= qsRHS

T − δt
{
−κT ∗S∗m2D + ε2

[
κT ∗S∗m2D − RT ∗

Cv

(
m2D + d

)]}
= TRHS

D − δt [−RG∗4T −RT ∗4qs −4φs +RT ∗(G∗ − 1)ε4q̂] = DRHS

d− δt
(
− g
rH∗L

∗
v q̂
)

= dRHS

q̂ − δt
[
−εCp

Cv
(m2D + d) + εS∗m2D

]
= q̂RHS .

(25)
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We introduced map factor m to keep consistency with Voitus.

We first adopt operators introduced in his report

G∗κX = I− cv
cp
G∗X

S∗κX = I− cv
cp
S∗X

L∗∗v X = 1
rH∗2

L∗vX

The opeator L∗∗v is vertically discretized version of continuous operator

1

rH∗2
π∗

m∗
∂

∂η

[
ε

(
π∗

m∗
∂

∂η
+ 1

)]
We can rewrite our system [50] using previous operators as

∂2D
∂t2

=
[
c∗2BHY + c∗2(ε2I + C1 −Bb)

]
4D

+c∗2G∗κε
24d

∂2d
∂t2

= c∗2L∗∗v εS
∗
κD + c∗2L∗∗v εd

(26)

With C1 = − cv
cp
A∗1 and BHY = cv

cp
(κG∗S∗ + N∗) and Bb = cv

cp

(
κG∗ε2S∗ + ε2sN

∗).
We have to realize that C1 in our case is discretized version of

C1 =
Cv
Cp

[
G∗ε2S∗X −G∗ε2X − ε2S∗X + ε2sN

∗X
]
.

When we assume also that the system is discretized in time we obtain
equivalent of equations (9) and (10) from report of Voitus,

[
I− δt2c∗2BHY − δt2c∗2(ε2I + C1 −Bb)

]
m24D

−δt2c∗2G∗κε24d = D•[
I− δt2c∗2L∗∗v ε

]
d− δt2c∗2L∗∗v εS∗κD = d•

(27)

with (11) and (12) of Voitus being modified as

D• = DRHS − δtRT ∗4
[
(I−G∗)εq̂RHS + G∗

TRHS
T ∗

+ qsRHS

]
(28)

and

d• = dRHS − δtRT ∗L∗∗v q̂RHS . (29)

When we define vertical new vertical operator as
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H∗v = I− δt2c∗2L∗∗v ε

and we modify (14) from Voitus as

d = H∗v
−1
[
d• + δt2c∗2L∗∗v εS

∗
κD
]
. (30)

then we obtain

[
I− δt2c∗2BHY − δt2c∗24(ε2I + C1 −Bb)

]
m2D =

D• + δt2c∗24G∗κε
2H∗v

−1 [d• + δt2c∗2L∗∗v εS
∗
κD
]

=

D•• + δt4c∗44G∗κε
2H∗v

−1L∗∗v εS
∗
κm

2D

(31)

with

D•• = D• + δt2c∗24G∗κε
2H∗v

−1d•. (32)

Resulting Helmholtz equation then yields[
1− δt2B4

]
D = D•• (33)

with

B = c∗2
[
BHY +

(
ε2I + C1 −Bb + δt2c∗2G∗κε

2H∗v
−1L∗∗v εS

∗
κ

)]
. (34)

It can be shown that NH part can be rewritten as

ε2I + C1 −Bb + δt2c∗2G∗κε
2H∗v

−1L∗∗v εS
∗
κ =

ε2I + C1 −Bb + G∗κε
2H∗v

−1(1−H∗v)S
∗
κ =

ε2I + C1 −Bb + G∗κε
2H∗v

−1S∗κ −G∗κε
2S∗κ =

ε2I + Cv
Cp

G∗ε2S∗ − Cv
Cp

G∗ε2 − Cv
Cp
ε2S∗ + Cv

Cp
ε2sN

∗

− cv
cp
κG∗ε2S∗ − cv

cp
ε2sN

∗

−ε2I + Cv
Cp
ε2S∗ + Cv

Cp
G∗ε2 −

(
Cv
Cp

)2
G∗ε2S∗

+G∗κε
2H∗v

−1S∗κ =

Cv
Cp

(
1− κ− Cv

Cp

)
G∗ε2S∗ + G∗κε

2H∗v
−1S∗κ = G∗κε

2H∗v
−1S∗κ

(35)

when using δt2c∗2L∗∗v ε = I−H∗v and 1− κ− Cv
Cp

= 0.

After re-arrangment we can show finally that
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B = c∗2 (BHY + BNH) . (36)

with

BNH = G∗κε
2H∗v

−1S∗κ. (37)

4 Linear mode and elimination of variables II.

This is version 2 of the system, implemented in a such a way that we enforce
p = πeεq̂. However, we did not change prognostic equation for q̂. In the
nonlinear model we do nothing else than we in routine GNHPRE define
pressure using previous diagnostic relation. This leads to following SI linear
model

∂qs
∂t = −N∗D
∂T
∂t = −κT ∗S∗D + ε

[
κT ∗S∗D − RT ∗

Cv
(D + d)

]
∂D
∂t = −RG∗4T −RT ∗4qs −4φs

+RT ∗(G∗ − 1)ε4q̂
∂d
∂t = − g2

RTa∗
V∗v q̂

∂q̂
∂t = −Cp

Cv
(D + d) + S∗D.

(38)

The operators L∗v is replaced by new operator V∗v. It is defined as

V∗vX = π∗

m∗
∂
∂η

[
ε
(
π∗

m∗
∂
∂η + 1

)
+ π∗

m∗

(
∂ε
∂η

)]
X (39)

We follows the same steps as in section before

∂2D
∂t2

= −RG∗4∂T
∂t −RT

∗4∂qs
∂t +RT ∗(G∗ − 1)ε4∂q̂

∂t
(40)

and we substitute from [38]. We obtain

∂2D
∂t2

= −RG∗4
{
−κT ∗S∗D + ε

[
κT ∗S∗D − RT ∗

Cv
(D + d)

]}
−RT ∗4{−N∗D}

+RT ∗(G∗ − 1)ε4
{
−Cp

Cv
(D + d) + S∗D

} (41)

after manipulation we obtain
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∂2D
∂t2

= −gH∗G∗
{
−κS∗4D + ε

[
κS∗4D − R

Cv
(4D +4d)

]}
−gH∗ {−N∗4D}

+gH∗(G∗ − 1)ε
{
−Cp

Cv
(4D +4d) + S∗4D

} (42)

After additional manipulation we obtain

∂2D
∂t2

= gH∗κG∗S∗4D + gH∗N∗4D

−gH∗κG∗εS∗4D

+gH∗ RCv
G∗ε4D + gH∗ RCv

G∗ε4d

−gH∗Cp

Cv
G∗ε4D + gH∗

Cp

Cv
ε4D

−gH∗Cp

Cv
G∗ε4d+ gH∗

Cp

Cv
ε4d

+gH∗G∗εS∗4D − gH∗εS∗4D.

(43)

First two terms are HY terms. Additional terms are NH departure.

∂2D
∂t2

= gH∗κG∗S∗4D + gH∗N∗4D

+gH∗
(
Cv
Cp

G∗εS∗ −G∗ε− εS∗
)
4D

+gH∗
(
R
Cp

G∗εS∗ − R
Cp

G∗εS∗ + εsN
∗ − εsN∗

)
4D

+c∗2ε4D

+(−gH∗G∗ + c∗2)ε4d

(44)

A∗1 constraint took the form

A∗1 := G∗ε(η)S∗X−G∗ε(η)X−ε(η)S∗X+εsN
∗X = G∗

π∗

m∗
∂ε(η)

∂η
S∗X. (45)

In order to employ previous relation we added red terms in [44]. After
manipulations we obtain

∂2D
∂t2

= gH∗ (κG∗S∗ + N∗)4D

+
[
gH∗ (A∗1 − κG∗εS∗ − εsN∗) + c∗2ε

]
4D

+(−gH∗G∗ + c∗2)ε4d

(46)

The same procedure we repeat with equation for vertical divergence
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∂2d
∂t2

= − g2

RTa∗
V∗v

∂q̂
∂t

(47)

∂2d
∂t2

= 1
rH∗2

V∗v
(
−gH∗S∗ + c∗2

)
D + c∗2 1

rH∗2
V∗vd. (48)

When system is discretized in time and in vertical direction, we can
follow steps reported in Voitus report. Our implicit system to be solved in
this version II. is

qs − δt
(
−N∗m2D

)
= qsRHS

T − δt
{
−κT ∗S∗m2D + ε

[
κT ∗S∗m2D − RT ∗

Cv

(
m2D + d

)]}
= TRHS

D − δt [−RG∗4T −RT ∗4qs −4φs +RT ∗(G∗ − 1)ε4q̂] = DRHS

d− δt
(
− g
rH∗V

∗
v q̂
)

= dRHS

q̂ − δt
[
−Cp

Cv
(m2D + d) + S∗m2D

]
= q̂RHS .

(49)
We define new operator

V∗∗v X = 1
rH∗2

V∗vX

We can rewrite our systemas

∂2D
∂t2

=
[
c∗2BHY + c∗2(εI + C1 −Bb)

]
4D

+c∗2G∗κε4d
∂2d
∂t2

= c∗2V∗∗v S∗κD + c∗2V∗∗v d

(50)

With C1 = − cv
cp
A∗1 and BHY = cv

cp
(κG∗S∗ + N∗) and Bb = cv

cp
(κG∗εS∗ + εsN

∗).
We have to realize that C1 in our case is discretized version of

C1 =
Cv
Cp

[G∗εS∗X −G∗εX − εS∗X + εsN
∗X] .

When we assume also that the system is discretized in time we obtain
equivalent of equations (9) and (10) from report of Voitus,

[
I− δt2c∗2BHY − δt2c∗2(εI + C1 −Bb)

]
m24D

−δt2c∗2G∗κε4d = D•[
I− δt2c∗2V∗∗v

]
d− δt2c∗2V∗∗v S∗κD = d•

(51)

with (11) and (12) of Voitus being modified as
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D• = DRHS − δtRT ∗4
[
(I−G∗)εq̂RHS + G∗

TRHS
T ∗

+ qsRHS

]
(52)

and

d• = dRHS − δtRT ∗V∗∗v q̂RHS . (53)

When we define now H∗v as

H∗v = I− δt2c∗2V∗∗v
and we modify (14) from Voitus as

d = H∗v
−1
[
d• + δt2c∗2V∗∗v S∗κD

]
. (54)

then we obtain

[
I− δt2c∗2BHY − δt2c∗24(εI + C1 −Bb)

]
m2D =

D• + δt2c∗24G∗κεH
∗
v
−1 [d• + δt2c∗2V∗∗v S∗κD

]
=

D•• + δt4c∗44G∗κεH
∗
v
−1V∗∗v S∗κm

2D

(55)

with

D•• = D• + δt2c∗24G∗κεH
∗
v
−1d•. (56)

Resulting Helmholtz equation then yields[
1− δt2B4

]
D = D•• (57)

with

B = c∗2
[
BHY +

(
εI + C1 −Bb + δt2c∗2G∗κεH

∗
v
−1V∗∗v S∗κ

)]
. (58)

It can be shown that NH part can be rewritten as
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εI + C1 −Bb + δt2c∗2G∗κεH
∗
v
−1V∗∗v εS

∗
κ =

εI + C1 −Bb + G∗κεH
∗
v
−1(1−H∗v)S

∗
κ =

εI + C1 −Bb + G∗κεH
∗
v
−1S∗κ −G∗κεS

∗
κ =

εI + Cv
Cp

G∗εS∗ − Cv
Cp

G∗ε− Cv
Cp
εS∗ + Cv

Cp
εsN

∗

− cv
cp
κG∗εS∗ − cv

cp
εsN

∗

−εI + Cv
Cp
εS∗ + Cv

Cp
G∗ε−

(
Cv
Cp

)2
G∗εS∗

+G∗κεH
∗
v
−1S∗κ =

Cv
Cp

(
1− κ− Cv

Cp

)
G∗εS∗ + G∗κεH

∗
v
−1S∗κ = G∗κεH

∗
v
−1S∗κ

(59)

when using δt2c∗2V∗∗v = I−H∗v and 1− κ− Cv
Cp

= 0.

After re-arrangment we can show finally that

B = c∗2 (BHY + BNH) . (60)

with

BNH = G∗κεH
∗
v
−1S∗κ. (61)

5 Implementation (version I.)

In order to better understand SI computation here we conclude what is
computed by SI routines.

SITNUPT (PD) = κT ∗S∗(PD)

SITNUPSP (PD) = N∗(PD)

SIGAMPD(PT, PSP ) = RG∗(PT ) +RT ∗(PSP )

SISEV EPV 2(PV 1) = 1
rL
∗
v(PV 1)

SIDDPDH(PT, PSP, PRNH) = RG∗(PT ) +RT ∗(PSP ) +RT ∗(1−G∗)ε(PRNH)

SIDDPDV (PRNH) = g2

RT ∗
1
rL
∗
v(PRNH)

SIPTPPT (PDH,PDV ) = RT ∗

Cv
(PDH + PDV )

SIPTPPRNH(PDH,PDV ) =
Cp

Cv
(PDH + PDV )− S∗(PDH)

(62)

13



with r = T ∗a
T ∗ = SITRA

SITR applied by default (can be off via optional argu-
ment).

Basic SI matrices are implemented in routine SUNHEEBMAT as follows

ZSIB HYD = c∗2Cv
Cp

(κG∗S∗ + N∗)

SIFACI =
(
I− δt2c∗2L∗∗v ε

)−1
= H∗v

−1
(63)

we use relation RT ∗ = RT ∗
Cp

Cv

Cv
Cp

= c∗2Cv
Cp

.

Taking into account that NH addictional part shall be c∗2G∗κH
∗
v
−1S∗κ we

were surprised by the length of original code in CY47 in routine SUNHEEB-
MAT. Ee analyzed the computation and here they are step by step

ZZ1 = c∗2I− CpκT ∗S∗ = c∗2S∗κ

ZZ21 = c∗2 1rL
∗
vS
∗
κ

ZZ22 = c∗2 1rH
∗
v
−1L∗vS

∗
κ

ZZ2 = c∗2
(
δt2c∗2H∗v

−1L∗∗v + I
)
S∗κ

ZZ3 = Rc∗2G∗
(
δt2c∗2H∗v

−1L∗∗v + I
)
S∗κ

ZSIB ADD =
(
I− Cv

Cp
G∗
)
c∗2
(
δt2c∗2H∗v

−1L∗∗v + I
)
S∗κ

= c∗2G∗κ
(
δt2c∗2H∗v

−1L∗∗v + I
)
S∗κ

= c∗2G∗κ
[
H∗v
−1 (I−H∗v) + I

]
S∗κ

= c∗2G∗κH
∗
v
−1S∗κ

(64)

We considered this implementation to be very complicated for under-
standing. Therefore we have implemented following simpler version without
any need to compute vertical laplacian operator L∗v

ZZ1 = c∗2I− CpκT ∗S∗ = c∗2S∗κ

ZZ2 = ε2H∗v
−1c∗2S∗κ

ZZ3 = RG∗ε2H∗v
−1c∗2S∗κ

ZSIB ADD = (I− Cv
CpR

RG∗)ε2H∗v
−1c∗2S∗κ

= c∗2G∗κε
2H∗v

−1S∗κ

(65)

We perform validation. The new simpler implementation sligtly differ at
the last digit of spectral norms.

14



Next step was implementation of ε into spectral space computations into
routine ESPNHEESI. Following quantities were modified consistently with
this report

ZSDIV = RG∗TRHS +RT ∗qsRHS +RT ∗(I−G∗)εq̂RHS

ZSV ED = g2

RT ∗
1
rL
∗
v q̂RHS

ZDH DOT = DRHS − δt4RG∗TRHS +RT ∗qsRHS +RT ∗(I−G∗)εq̂RHS = D•

ZV D DOT = I− δt g2

RT ∗
1
rL
∗
v q̂RHS = d•

Z11 = ε2H∗v
−1d•

Z12 = RG∗ε2H∗v
−1d•

ZSRHS = D• − δt24
(
T ∗RG∗ε2H∗v

−1d• − c∗2ε2H∗v−1d•
)

= D• + δt24c∗2G∗κε2H∗v−1d• = D••

ZZSPDIV G =
(
I− δt24B

)−1
D••

(66)
The solution of ZZSPDIVG is performed in eigenspace of vertical eigen-

modes. Then we compute spectral coefficients of d (ZZSPDIVG) via follow-
ing steps

Z21 = εCpκT
∗S∗m2D − c∗2m2D = −c∗2εS∗κm2D

Z22 = −1
rL
∗
vc
∗2εS∗κm

2D

Z23 = d• + δt2

H∗2
1
rL
∗
vc
∗2εS∗κm

2D

= d• + δt2c∗2L∗∗v εS
∗
κm

2D

ZZSPSV DG = H∗v
−1 (d• + δt2c∗2L∗∗v εS

∗
κm

2D
)

(67)

We compute new value of q̂ (ZZSPSPDG)

ZZSPSPDG = q̂RHS − δtε
[
Cp

Cv

(
m2D + d

)
− Cp

RT ∗κT
∗S∗m2D

]
= q̂RHS − δtε

[
Cp

Cv

(
m2D + d

)
− S∗m2D

] (68)

We compute new value of T (ZZSPTG)

ZZSPTG = TRHS − δtε2RT
∗

Cv

(
m2D + d

)
− δt

(
1− ε2

)
κT ∗S∗m2D.

(69)
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Further we modifies grid point part of SI computation (only SL part)
inside LANHSI routine.

Nonlinear model is modified in routines CPG GP NHEE. First we mod-
ifify computation of geopotential

ZRRED0 = R ∗
[
1 + ε

(
π
p − 1

)]
(70)

then in routine GPGEO we compute geopotential as before. Consistenly
we modified also calculations of gradient of geopotential in GPGRGEO.

6 Tests with constant ε

7 Tests with vertically varying ε

8 Conclusion

Previous formulation allow us to control non-hydrostaticity of model. This
has no meaning in full non-linear model as only solution with ε = 0 or ε = 1
has physical meaning. However it could be worth to investigate the stability
of NH model with ε > 1 (over-non-hydrostatic). I will study this.
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