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1 Introduction

Nowadays, operational NWP limited models, used at convection permiting scales (2km and
higher), are computed on relatively small geographic domains. It means that prevailing
character of weather could be very similar in the whole domain. When calm non-convective
weather conditions are in the whole domain then NH effects are uniformly neglegible. We
know from experiences that in such situation, we could integrate model with cheaper SI
scheme. More expensive PC scheme is expected to be required only from time to time
only. If we could identify dynamically what scheme is required at given time step, than
we could significantly improve model prediction efficiency as SI scheme is approx. 30 %
cheaper when compared to PC scheme (LPC CHEAP considered).

During the stay we aim to determine some norm or measure that will be proportional
to NH activity in model domain. Based on this measure we could decide at the beginning
of time step if we use SI scheme or PC scheme. First idea is to look at pressure departure
residuals.

We could even dynamically determine number of iterations in PC scheme. It is currently
constant during whole integration. Disadvantage of such approach is inability to predict
in advance the time we need to compute model prediction. Therefore such option must be
carefully investigated.

This approach is difficult to use for large domain, because PC scheme iterations has
”global” character. We could expect always some area with NH active events in such sim-
ulations. However, our approach can be very beneficial for future small domain convective
scale ensemble simulations, when PC scheme will be active during convection activity only
for example.

If we try to see things in larger picture, we could combine single precisiton speedup with
actually proposed dynamical PC scheme one. we could expect CPU saving in range 50-60
% or maybe higher. And we still not consider GPU potential (cuBLAS is 5x faster that
traditional BLAS, half-level precision for some calculation where precition is not an issue
...). With little bit of fantasy, we could imagine to afford running kilometric resolutions in
relatively short time span even in countries with weaker IT infrastructure.
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2 Test case

We focused on the case from 28th January 2008 over central Europe territory. The
resolution is 1km, 97 vertical levels and time step 60s. This case is not possible to compute
with SI scheme (SETTLS) and PC scheme must be used.

In order to accelerate development we focus on subdomain with 90x60 E zone size, 1km
resolution and 87 vertical levels) (referred as CZTI). We verified that the stability remain
unchanged with respect to full domain. The geographical domain CZTI and its orography
is shown on Fig 1.
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Figure 1: orography of CZTI domain - 1km resolution

3 Determination of time stepping and implementation in
cy43t2

We found that SI and also PC scheme are unstable when SETTLS extrapolation is used
globally on nonlinear residuals (LSETTLS). The stability is recovered in both schemes
when non-extrapolating approach is used globally on residuals (LNESC).

Stability is not sensitive to extrapolation approach used on SL trajectory computations
(LSETTLST, LSETTLSV, LNESCT, LNESCV).

Using LNESC with SI scheme provides first order accurate scheme in time. This is
clearly visible on gravity current simulation on Fig 2.

We start integration with PC scheme. We use SETTLS dataflow. We decide if we use
in given point and given variable SETTLS or NESC scheme. Global characteristic in each
level for each variable is computed under cpg drv extrapolated using NESC (SETTLS is
off). This characteristic is shown on Fig 3, and it can be seen that number of points where
SETTLS must be off is rapidly decreasing at the beginning of time step.

In order to run NESC scheme using SETTLS dataflow following routines were modified
lattex dnt (3D residuals), lattes (continuity equation residual), lattex (X-term extrapo-
lation), lanhsib (linear terms - this is not protected by LSETTLS key, but rather with
LSLINL, LSLINLC2).
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(a) PC scheme and NESC (b) SI scheme and NESC

Figure 2: Inaccuracy of NESC approach shown on Straka gravity current after 600s of
simulation
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Figure 3: percentage of points where SETTLS scheme was off under SETTLS scheme in
3D case on CZTI domain. Horizontal axis is model time step, vertical axis is
model level. Statistic is computed for equations of U wind component, T, PD,
VD and 3D part of continutity equation

W have introduced quantity λ to control extrapolation method during prediction. To
define λ we adopted approach of Diamantakis (LSETTLSVF).

4 Uniform acceleration scheme (SETTLS)

The nonlinear residual is quantity R = M − L where M is full nonlinear space discretized
model and L linear one. Time stepping of each equation can be written

xt+∆t
F − xtO

∆t
= R

t+ ∆t
2

M +
Lt+∆t
F + Lt

O

2
(1)
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The quantity at timeinstant t+ ∆t
2 is unknown as we predict at instants t+ n∆t and

therefore must be extrapolated. The stable extrapolation scheme SETTLS gives

R
t+ ∆t

2
M ≈ 1

2

(
Rt

)
F

+
1

2

(
2Rt −Rt−∆t

)
O
. (2)

The nonextrapolating scheme yields

R
t+ ∆t

2
M ≈ 1

2

(
Rt

)
F

+
1

2

(
Rt

)
O
. (3)

5 Implementation of SETTLS and PC CHEAP

PC scheme corrector steps are formulated as

x
t+∆t(n+1)
F − xtO

∆t
=

1

2

(
Rt+∆t(n)

)
F

+
1

2

(
Rt

)
O

+
L
t+∆t(n+1)
F + Lt

O

2
(4)

The efficient implementation of PC CHEAP scheme requires to store quantity interpo-
lated at origin point during predictor

BCO =

(
xt +

∆t

2
Rt +

∆t

2
Lt

)
O

(5)

However, we see from Eq. 2 that during SETTLS we compute different quantity at
origin point

BSO =

(
xt +

∆t

2

(
2Rt −Rt−∆t

)
+

∆t

2
Lt

)
O

(6)

For appropriote implementation we have to divide interpolated quantity into two parts

BSO = BCO +
∆t

2

(
Rt −Rt−∆t

)
O
. (7)

Further complication of problem is cause by LGWADV approach, where nonlinear and
linear parts of equation are formuled using different prognostic quantities. Therefore we
can not mix them and they have to be separated. It gives

BCO =

(
xt +

∆t

2
M t

)
O
, (8)

the corrector quantity interpolated into origin point has no linear term contribution.
The SETTLS part is

BSO = BCO + λ
∆t

2

(
M t −M t−∆t

)
O
− λ∆t

2

(
Lt − Lt−∆t

)
O
. (9)

We can control by λ which extrapolation approach is used during time step. λ = 1 turns
on SETTLS scheme, λ = 0 turns off and we use NESC approach.

Implementation of SETTLS scheme with LPC CHEAP requires 3 interpolation buffers
for each predicted quantity during predictor step
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PB1 pointer quantity usage routine quantity under lapineb

MSLB1X9 NL λ∆t
2

(
M t −M t−∆t

)
SETTLS predictor lattex dnt/lattes GMV9 NL/C9 NL

MSLB1X9 SI λ∆t
2

(
Lt − Lt−∆t

)
SETTLS predictor lanhsib GMV9 SI/C9 SI

MSLB1X0 ∆t
2 M

t SETTLS/NESC predictor/corrector lattex dnt/lattes GMV9/C9

MSLB1X9 xt + ∆tP SETTLS/NESC predictor/corrector lattex dnt/lattes GMV9/C9

Only quantity needed to be saved after interpolations during predictor step of PC
scheme is GMV9 buffer in lapineb.

We added for completeness also physical tendency at origin point ∆tP .

Final point buffers remains unchanged and they are independent of extrapolation
method.

6 Definition of extrapolation method in given point in space

The extrapolated quantity under LSETTLS key is

Rt+ ∆t
2 = 2Rt −Rt−∆t. (10)

We measure amplitude of extrapolated quantity in PD equation (lattex dev) as

λ1 = 1− |R
t −Rt−∆t|

|Rt|+ |Rt−∆t|
. (11)

Another appropriate function would is

λ2 = 1− tanh
(
(Rt −Rt−∆t)2

)
. (12)

Typical function properties are shown on Fig 4. We do not understand exactly the
meaning of non-symmetric behaviour of λ1. We believe that function shall be symmetric
with respect to residual difference magnitude.

When value of λ ≈ 1 we turn on SETTLS scheme in given point in space, NESC
otherwise.

7 Changing time stepping from PC to SI and vice versa

We collect globally information about the usage of SETTLS/NESC, based on λ pa-
rameter (see cpg drv global reduction). The global usage of scheme is computed as
α = 100 nNESC

NGPTOTG . Be aware that in LAM version of code NGPTOTG = NDLON ∗
NDGUXG.

When αis sufficiently small we know that we are using SETTLS scheme in majority of
points. This allow us to turn of PC scheme (setting NSITER=0 in cnt4). We continue
in model integration using SI scheme with SETTLS. We further control evolution of α

5



-5 5

0.2

0.4

0.6

0.8

1.0

Figure 4: Functions that measure amplitude of extrapolated quantity. Blue is λ1 and
yellow is λ2. The residual Rt−∆t = 0.5 and the residual Rt is plotted on axis x.

parameter. Once it increases over given treshold, we turn on PC scheme again (NSITER=1
in cnt4). This is done during whole model integration.
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Figure 5: The percentage of points where NESC scheme is used. When in average the
α > 10 we turn in SI scheme, PC with NSITER=1 otherwise. 3h integration is
shown, computed with dt=60s. In total 26 time steps were SI in this simulation
(10% of CPU was saved)

8 Technical implementation of SETTLS with PC CHEAP

The scheme is designed for HY and NH model (HY not tested). The following variables
have to be set in namelist
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namelist variable value

NAMDYNA LSETTLS TRUE

NAMDYNA LPC CHEAP TRUE

NAMDYN N[X]LAG 3

All other consistencies imposed by setup must be fullfilled.

We modified following routines

1. PTRSLB1

Introduction of pointers MSLB1[x]9 NL

2. SUSLB

Initialisation of MSLB1[x]9 NL pointers

3. LATTEX

Interface of PB1 buffer to LATTEX DNT routine

4. LATTEX DNT/LATTES

SL buffers are filled according Table 5. Introduction of ZEXTRA that play the role
of λ parameter in Table 5

5. LANHSIB

Introduction of ZEXTRA that play the role of λ parameter in Table 5.

6. LAPINEB

Interface to LARCINB and LARCINHB. Saving of interpolated buffers into PC CHEAP
buffer during predictor, restoring buffers during corrector. Contruction of RHS from
partially interpolated quantities from Table 5.

7. LARCINB/LARCINHB

Linear interpolation of 3D buffers.
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