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Dynamical PC scheme for NH kernel of AAA
models

Part 1: Theoretical considerations and implementation of LSETTLS residual extrapolation into
LPC CHEAP scheme.

Jozef Vivoda, SHMI, RC LACE stay in Prague, 05/2017

Abstract—We present simplified derivation of second-order
accurate SL schemes in the sense of [1]. We further generalize
approach to residual computed from explicit guess. We also
analyze shortly the stability of proposed set of schemes. We show
that schemes proposed in this note are theoretically much more
stable than standard SETTLS or NESC scheme for SL advection
problem.

I. INTRODUCTION

In [1] is described the complete set of SL schemes that
are second-order accurate in time, using information at time
levels t and t−∆t and spatial location at arrival and departure
point. Such approach is effective in NWP, because there is
only one location to interpolate per grid point and time step.
However, [1] did not include in its analysis the possibility to
use also values at time instant t+ ∆t at arrival point. This is
possible when t + ∆t quantities are computed using explicit
scheme with SETTLS approach. This ensures that explicit
guess is second order accurate in time as shown by [1] and
that ensured that whole scheme is second order accurate.

We present in part 1 simplified approach sufficient to
reproduce results in [1]. We reproduce results that the most
stable scheme from proposed schemes is SETTLS scheme. We
further include t + ∆t quantities into analysed SL approach.
We show in part 3 that the schemes with explicit t + ∆t
are even more stable than SETTLS scheme. We hope this
approach will work in the context of full spectral NWP model
as there are some limitation of practical implementation.

The implementation in spectral model like ALADIN did
not allow to compute effectively horizontal derivatives of
prognostic quantities of explicit guess. This requires going
into spectral space and back and this is something we want to
avoid due to effectivity of the scheme. Therefore NL residual
at explicit guess can not be fully evaluated at t + ∆t. We
are using prognostic quantites at explicit t + ∆t and their
derivatives at t. This is the same approach used in ND4SYS=2
to compute evolution of X-term.

II. SIMPLIFIED APPROACH TO FORMULATE
SECOND-ORDER ACCURATE SL SCHEME IN TIME

We want to solve equation df(t,x)
dt = N(t, x). We use

explicit centered scheme and SL approach.

We have adopted traditional SL notation in which the
supersript ’-’,’m’,’0’ and ’+’ stand for the t−∆t, t− ∆t

2 , t and
t + ∆t time levels respectively (t + ∆t being the forecasted
one) and the subscripts ’D’,’M’ and ’A’ stand for the departure
(x−∆x), middle (x− ∆x

2 ) and arrival (x) points of the SL
trajectory.

The second-order time centered scheme is

f+
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D

∆t
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(
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)
. (1)

We have to approximate Nm
M . We look for second order

approximation in the form
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We use polynomial series expansion around the state N0
A.

We assume advection by constant wind U . The expansion
gives

N(t+ a∆t, x+ b∆x) = N(t+ a∆t,∆x+ bU∆t) =
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We expand all quantities in Eq. 2. We obtain
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We require all terms at LHS to dissapear. This leads to the
same solution as in [1], a1 = 3

4 −α, a2 = α− 1
4 , a3 = α+ 3

4
and a4 = − 1

4 − α.

This means that for any α we approximate Nn
M with

second-order of accuracy in time.

The LSETTLS scheme is obtained for α = 1
4 .

When we introduce control parameter β into LSETTLS
scheme we can write it as departure from LNESC scheme
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)
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Setting β = 0 we obtain LNESC scheme that is O (∆t).
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III. SECOND-ORDER ACCURATE SL SCHEME IN TIME WITH
EXPLICIT GUESS AT t+ ∆t

We assume we have available some guess f̃+
A . For example

explicit guess computed using LSETTLS scheme

f̃+
A = f0

D +
∆t

2

(
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A +N0

D

)
+ ∆t

1
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D −N−

D

)
. (6)

We can compute Ñ+
A and we could search for approximation

of Nm
M using

e1N
0
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+
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0
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−
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)
. (7)

We replaced N−
A by explicit guess N+

A in Eq. 7. Following
procedure described in previous section we obtain solution
e1 = 1

4 + α, e2 = 1
4 − α, e3 = α+ 3

4 and e4 = − 1
4 − α.

The final scheme
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is second order accurate for any value of α.

IV. ANALYSIS OF STABILITY OF SI SETTLS/NESC
SCHEME

Analysis of stability is performed as in [2]. We analyse the
stability of system

df(t, x)

dt
= N(t, x) = (λ+ iω) f(t, x). (9)

We consider only λ ≤ 0 to avoid solutions that are
exponentially growing already in analytical form.

We analyze the stability of single fourier component
f(n∆t, j∆x) = Aneikj∆x advected using constant wind U .
When we introduce CFL θ = Uk∆t we could write fourier
components as f(n∆t, j∆x) = Aneijθ.

We analyze the stability of time stepping described by Eq. 5.
We substitute N by our prototype Eq. 9. We obtain quadratic
equation for evolution of amplitude A

−2A2eiθ +A
[
2 +

(
1 + β + eiθ

)
(λ+ iω)

]
− β(λ+ iω) = 0

(10)
Since equation is periodic with respect to θ (because

expression eiθ represents circle in complex plane) we limit
ourself to domain θ ∈ (−π, π]. We plot contour line A = 1 for
each θ in the set of values [−9π/10,−8π/10, . . . , 0, . . . , π].
The domain of stabilty in (ω∆t, λ∆t) plane for four values
of β scheme is plotted on Fig. 5. The stability of SETTLS
is identical to one presented at Fig. 1 in [2]. We enlarge
stability in λ∆t domain with decreasing β.

We know that NESC scheme is stable for all values of λ in
the case of ω = 0 only. However, this is not practical problem,

(a) β = 1, SETTLS (b) β = 1/2

(c) β = 1/100 (d) β = 0, NESC

Figure 1: Stability of SETTLS/NESC scheme for various
values of β.

(a) β = 1, SETTLS (b) β = 1/2

(c) β = 1/100 (d) β = 0, NESC

Figure 2: Same as on Fig. 5, but we implement semi-implicit
scheme with δ = 3/4.

because SI scheme is applied to stabilize time stepping with
respect to processes represented by ω in our system. We
introduce linear model L(t, x) = iδωf(t, x). Here δ is tuning
parameter. Setting δ = 1 the wave modes are treated in fully
implicit manner. The time stepping than follows traditional
SI SL scheme written with nonlinear residual R(t, x) =
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N(t, x)− L(t, x) = [λ+ i(1− δ)ω] f(t, x) as
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(11)

When we again analyze the stability of single fourier mode,
the equation 10 now takes the form

iA2eiθ(δω∆t+ 2i)

+A
[
−iω∆t

[
τ1(β + eiθ)− 1

]
+ λ∆t

(
β + eiθ + 1

)
+ 2
]

−β [λ∆t− iτ1ω∆t] = 0
(12)

The stability for δ = 3/4 (major part of waves is treated
implicitly) is shown on Fig. 2. We see stabilisation effect in
direction along ω∆t axes.

V. ANALYSIS OF STABILITY OF SI SCHEME WITH EXPLICIT
GUESS

We add SI treatment to equation 8. This yields
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The relation for amplitude A in this case is very complex
(we do not put it into report). We present the results for
various values of α and δ on Fig. 3. The region of stability
of SL scheme is greatly enhanced by Fig. 3. The stability
regions is enlarged in λ, so the scheme has similar property
as NESC scheme, but the stability in ω directions if preserved.

The problem arises in implementation of proposed scheme
in spectral model. Horizontal derivatives are needed to
evalues R̃+. However, they are not availaible at the end of SL
advection (LAPINEB). We want to avoid going to spectral
space and back, because in such case we have PC scheme
option that is sufficient to stabilize model. We would like
our scheme to remain semi-implicit, therefore we evaluate
R̃+ = R̃+(f̃+, ~∇f0). Such scheme is apparently not second
order accurate, but the framework of our analysis do not
allow us to study this aspect.

Practical implementation of the scheme is very simple under
LPC CHEAP and LSETTLS scheme, beceuse the division
of linear and nonlinear terms allow effective computation of
explicit guess f̃+.

VI. ANALYSIS OF STABILITY OF PC SCHEME WITH
SETTLS/NESC PREDICTOR

PC scheme requires solution of SI solver in both steps
predictor and corrector. Therefore is more expensive than the

(a) α = 1/4, δ = 0, SETTLS (b) α = 0, δ = 0

(c) α = −1/4, δ = 0 (d) α = 1/10, δ = 3/4

Figure 3: Stability of scheme with Ñ+A term for various
values of α.

schemes mentioned in previous paragraphs. Nevertheless, it
is used in operational practice of NH model as it is robust
and stable. (PC scheme belongs to class of schemes called
linear multistep method class Adams-Moulton methods).

The predictor scheme is performed using SETTLS/NESC
scheme as
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(14)

and corrector is

f̃
+(n)
A − f0

D

∆t
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1

2

(
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A +R0

D

)
+

1

2

(
L
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D

)
.

(15)
The notation ” + (n)” represents state at t+ ∆t after n-th

corrector step. In the model n is represented by variable
NSITER.

We analyzed the stability for δ = 3/4 with respect to β
parameter. The results are on Fig. 4. We confirmed that PC
scheme is very stable and robust. However, we know that PC
scheme with SETTLS in predictor is unstable in NH model
simulation in some situation. We know that in such situations
using NESC scheme will stabilize time stepping. It seems that
the source of instability is not in the SL treatment studied
in this report, but rather some other process sensitive to time
stepping treatment.
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(a) β = 1, SETTLS predictor,
NSITER=1

(b) β = 0, NESC predictor,
NSITER=1

Figure 4: Stability of PC for δ = 3/4.

VII. IMPLEMENTATION OF PC SCHEME IN MODEL
ALADIN

The PC scheme is implemented exactly as described by
equations 14 and 15. We have further choice to iterate also
trajectories. They are computed during predictor as

~rA − ~r(0)
D

∆t
=

1

2

(
~v0
A + ~v0

D

)
+
β

2

(
~v0 − ~v−

)(0)

D
, (16)

and during n-th corrector as

~rA − ~r(n)
D

∆t
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2
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A +

1

2
~v

(n)
D . (17)

Tracectory search algorithm is divided into horizontal and
vertical part in the model (see LAVENT). Extrapolation in
horizontal part of 16 is controlled by (LSETTLST, LNESCT)
keys and vertical part by (LSETTLSV, LNESCV) keys.

It was found that recomputation of trajectories during
corrector has detrimental effect on model simulation. Also
the CPU costs of such scheme is higher because we have to
re-interpolate all quantites at D point every corrector.

Therefore, the ”cheaper” PC scheme scheme was introduced
[3] and [4] (LPC CHEAP). Idea of this scheme is to compute
trajectories and carry out interpolation during predictor only.
All neccessary quantites evaluated at D points are stored in
buffer (see LAPINEB) and used during corrector step. All
computations during corrector are perfomed at A points and
there is no need for interpolations.

It can be derived from 15 that the quantity needed during
corrector at D point is

BCD =

[
x0 +

∆t

2
R0 +

∆t

2
L0

]
D

=

[
x0 +

∆t

2
N0

]
D

(18)

The quantity must be precomputed during predictor step
and store in buffer.

However, we see from eq. 14 that during predictor we
compute at D point quantity

BSD = BCD +

[
β∆t

2

(
R0 −R−)]

D

(19)

When β = 0 (LNESC scheme) than BSD = BCD. It
means that quantity interpolated at D point during predictor is
exactly the same is one needed during corrector. When β > 0

than we have to interpolate quantity
[
β∆t

2

(
R0 −R−)]

D
independently during predictor.

The cheap PC scheme is further complicated when
LGWADV is turned on, because N is formulated using differ-
ent set of prognostic variables than L. Therefore we can not
mix them and they have to be separated. We see from eq. 18
that it is independent of L, therefore only relevant part that
have to be separated is term with β

BPD =

[
β∆t

2

(
N0 −N−)]

D

+

[
−β∆t

2

(
L0 − L−)]

D

.

(20)

VIII. TECHNICAL IMPLEMENTATION OF SETTLS WITH
PC CHEAP

Implementation of SETTLS scheme with LPC CHEAP
requires 4 interpolation buffers for each predicted quantity
during predictor step. The names of SL pointers under
LATTEX and relevant quantities in them are listed in Table 1.
Only quantity needed to be saved after interpolations during
predictor is GMV9 buffer in LAPINEB.

Final point buffers remains unchanged and they are
independent of extrapolation method and PC scheme version.

The scheme is designed for HY and NH model (HY not
tested). Variables in Table 2 are mandatory.

All other consistencies imposed by setup must be fullfilled.

Modified routines with short explanation are in Table 3.

IX. EVALUATION OF SETTLS PC CHEAP SCHEME

We evaluated scheme using Straka test case from [5].

X. CONCLUSION

We have analyzed the stability of SETTLS/NESC scheme
applied on 1D horizontal advection problem. We know from
practical experiments that NESC scheme is stable in wider
ranges of situations, than SETTLS scheme, but less accurate.
We shown in analysis that the reason is probably better
control of processes with exponentially decaying character.

We proposed modification of SETTLS scheme in a way that
we include explicit guess into evaluation at RHS, whole still
keeping O

(
∆t2

)
character of overall scheme. We compared

the stability properties of our scheme against results published
by [2]. The proposed scheme is theoretically more stable
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PB1 pointer quantity usage routine quantity under lapineb

MSLB1X9 NL λ∆t
2

(
Mt −Mt−∆t

)
SETTLS predictor lattex dnt/lattes GMV9 NL/C9 NL

MSLB1X9 SI λ∆t
2

(
Lt − Lt−∆t

)
SETTLS predictor lanhsib GMV9 SI/C9 SI

MSLB1X0 ∆t
2
Mt SETTLS/NESC predictor/corrector lattex dnt/lattes GMV9/C9

MSLB1X9 xt SETTLS/NESC predictor/corrector lattex dnt/lattes GMV9/C9

Table I: SL buffers pointers and their content during predictor for LPC CHEAP scheme

namelist variable value
NAMDYNA LSETTLS TRUE
NAMDYNA LPC CHEAP TRUE
NAMDYN N[X]LAG 3

Table II: Namelist parameter for LPC CHEAP with LSETTLS
extrapolation during predictor

routine modification

ptrslb1.F90 Introduction of pointers MSLB1[x]9 NL

suslb.F90 Initialisation of MSLB1[x]9 NL pointers

lattex.F90 Interface of PB1 buffer to LATTEX DNT routine

lattex dnt.F90 SL buffers filled according Table 1; ZEXTRA rep-
resents β parameter

lattes.F90 SL buffers filled according Table 1; ZEXTRA rep-
resents β parameter

lanhsib.F90 linear part of equation 20; ZEXTRA represents β
parameter

lapineb.F90 Interface to LARCINB and LARCINHB; Saving of
interpolated buffers into PC CHEAP buffer during
predictor, restoring buffers during corrector; Con-
truction of RHS from partially interpolated quantities
from Table 1

larcinb.F90 Linear interpolation of 3D buffers

larcinhb.F90 Linear interpolation of 3D buffers

Table III: Modifications in order to implement LSETTLS
extrapolation and LPC CHEAP scheme.

and more accurate that NESC scheme. However, the spectral
character of our model does not allow us to keep it fully
second-order accurate. This aspects must be studied after
full implementation of proposed scheme into model ALADIN.

Proposed time stepping is stable with respect to SL
advection process. This does not ensure the stability of
scheme in vertical direction as published by [6] and [7]. This
remain to be studied.

We have implemented SETTLS extrapolation of nonlinear
residual terms in LPC CHEAP. This allow us to control
smoothly stability of time stepping via dynamical control of
β paramater. This must be done in near future.
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