
Application of ENO technique to semi-Lagrangian
interpolations

RC LACE stay report
Scientific supervisors: Petra Smoĺıková and Ján Mašek
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1 Introduction

Weighted essentially non-oscillatory scheme was first proposed by Liu, Osher and Chan in
[4] and further developped by many authors, see for example [1, 2, 3]. WENO schemes
are based on ENO technique with the key idea of finding the ”smoothest” stencil among
several candidates to interpolate to a high order accuracy and to avoid at the same time
spurious oscillations near discontinuities or sharp gradients in the interpolated field. In case
of WENO method instead of choosing the ”smoothest” stencil possible, the weighted sum
of values interpolated on several stencils is used with weights based again on smoothness
evaluation. Moreover, the weights can be chosen in such a way that in smooth regions it
approaches certain optimal weights to achieve a higher order of accuracy, while in regions
near discontinuities, the stencils which contain discontinuities are assigned a nearly zero
weight. ENO schemes are not cost effective on vector supercomputers because the stencil-
choosing step involves heavy usage of logical statements, which perform poorly on such
machines. On the other hand, WENO scheme completely removes the logical statements
that appear in the ENO stencil choosing step. As the result, WENO scheme appear to be
much faster than ENO scheme on vector machines.

After a preparatory extension of the whole interpolation stencil from 4 to 6 points,
third order ENO technique was implemented in the code in the last year, see [5]. The
goal of this stay was to implement the third order WENO interpolation technique based
on previous work and compare it with the classical cubic Lagrange interpolation and cubic
ENO scheme.

2 Implementation in the cycle 40t1

To construct a third order WENO interpolation of a field f to the point x, we need to
know f in a set S = {xj−2, ..., xj+3} of six points, with the subsets Sk = {xj−3+k, ..., xj+k},
k = 1, 3.

xj xj+1 xj+2 xj+3

xj−1 xj xj+1 xj+2

xj−2 xj−1 xj xj+1

x

1

Having the interpolation point x in the central interval [xj , xj+1] of the big stencil S,
the interpolator is built as a linear combination of the interpolation polynomials on the
three stencils Sk, through the following form:

P (x) =
3∑

k=1

ωk(x)Pk(x), (1)

where the weights were built as follows:

ωk(x) =
ω̃k(x)

ω̃1(x) + ω̃2(x) + ω̃3(x)
, ω̃k(x) =

Ck(x)
(βk(x) + ε)p

. (2)

1



This method should assign to each polynomial Pk a weight ωk according to the smooth-
ness of the function f on the corresponding sub-stencil Sk. In the above formula, the term
βk is considered to be a smoothness indicator and is used to measure the smoothness of the
solution on each sub-stencil Sk. There are multiple ways of defining it. If all the stencils
are equally smooth according to the definition used for the smoothness indicators βk, we
want to obtain the non-linear weights ωk in a way that leads to the highest degree approx-
imation for the interpolated function. We can achieve fifth degree for 6 point stencil. The
smoother is the function on the stencil Sk, the lower is the value of βk.

The success of this method depends largely on the definition of the smoothness indi-
cators βk. One way of measuring the variation of the function is based on L2-norm of
high-order variations of the reconstruction polynomials [3]:

βk(x) =
3∑
l=1

∫ xj+1

xj

(∆x)2l−1(P (l)
k (x))2dx (3)

Similar definitions for βk were also tested (the difference between them being the derivatives
of Pk taken into account):

βk(x) =
3∑
l=2

∫ xj+1

xj

(∆x)2l−1(P (l)
k (x))2dx (4)

βk(x) =
∫ xj+1

xj

(∆x)3(P (2)
k (x))2dx (5)

βk(x) =
∫ xj+1

xj

(∆x)5(P (3)
k (x))2dx (6)

Another method ([2],[4]) of estimating the smoothness of the function f on stencil Sk
involves undivided differences:

βk(x) =
3∑
l=1

4−l∑
i=1

(f [j + k + i− 4, l])2

4− l
, (7)

where the undivided difference f [·, ·] is defined recursively as follows:

f [j, 0] = f(xj), f [j, l] = f [j + 1, l − 1]− f [j, l − 1].

In the above formula, the “linear weights“ Ck are polynomials of degree 2 and Pk
are polynomials of degree 3 interpolating the function on each sub-stencil Sk (for our
experiments, we used cubic Lagrange polynomials for defining Pk). Following the definition
described in [1] and assuming regular grid both in horizontal and vertical (LREGETA=.T.),
the “linear weights” have the form:

C1(x) =
1
20

(2− ξ)(3− ξ), C2(x) =
1
−10

(2 + ξ)(ξ − 3), C3(x) =
1
20

(2 + ξ)(1 + ξ), (8)

where variable ξ =
x− xj

∆x
and ∆x is the mesh size.
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In equation (2), parameter p in the denominator serves to increase/decrease the dis-
sipation of the scheme (see [3]), and ε is a small positive number used to avoid/prevent
division by zero. In the experiments, ε = 10−6 and three values of p were tested, namely
p=0.5, p=2 and p=3.

In order to implement this scheme, new subroutine LAIWENO was designed for com-
putation of weights ωk. This routine is called from subroutine LAITRI WENO (and the
bidimensional version LAIDDI WENO). The choice for the smoothness indicators βk can
be made using variable KDER, which can get integer values from 1 to 5, depending on
their definition, respectively, according to equations (3) - (7). Also, the value of p used
in the definition of the weights (equation 2) may be set, through the namelist parameter
RALPHA. Variable PDIST is either PDLO (in longitude), PDLAT (in latitude) or PDVER
(in vertical dimension) and represents the distance ξ in equation (8).

The WENO scheme may be applied using the general switch LWENO, appearing in the
module YOMENO and being declared in the namelist namdyn. Other necessary changes
were made in subroutines LARCINB and LAITRE GMV.

3 Experiments

For the evaluation of WENO method, several tests were performed. Preliminary 1D tests
performed by Petra Smoĺıková include linear advection of a rectangular pulse in a periodic
domain and visualisation of the weights ωk, k = 1, 3 for each definition of the smoothness
indicators (equations 3-7), for several values of variable p, as well as the particular case of
βk = 0, corresponding to the Lagrange interpolation of the fifth order.

Figure 1 shows results for different definitions of the smoothness indicator, compared
with cubic Lagrange interpolator and ENO scheme. The over/undershoots present in
cubic Lagrange solution almost disappear when ENO is used while they are completely
eliminated with WENO scheme using definition (4) and (7). In Figures 2 and 3 one can
see that WENO definitions lead to the expected behaviour: the stencil not containing the
discontinuity has bigger value of the weight. One can notice that even if all definitions
give very similar weights after one time step (see Figure 2), longer interpolation leads to
different weight patterns (see Figure 3).

Having this encouraging results we proceeded to 2D experiments - classical test (Andre
Robert): warm bubble with sharp boundary rising up in the field of constant potential
temperature (300K) without forced horizontal advection. The reference solution uses cubic
Lagrange interpolator.
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Figure 1: Linear advection of a rectangular pulse in a periodic domain, red - original function, orange - after 1
revolution, yellow - after 2 revolutions, green - after 3 revolutions, blue - after 4 revolutions, violet - after 5 revolutions.
Cubic Lagrange, cubic Lagrange with quasi-monotonic version, ENO scheme (first row - from left to right), WENO
scheme, p=0.5, different definitions for βk: eq. 3, eq. 4, eq. 5 (second row - from left to right), eq. 6, eq. 7 and
βk = 0 case (third row - from left to right)
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Figure 2: Linear advection of a rectangular pulse after 1 time step, WENO weights ω1 (red), ω2 (blue), ω3 (green),
p = 0.5, different definitions for βk: eq. 3 (left), eq. 4 (center), eq. 7 (right)

Figure 3: The same as Figure 2 after 280 time steps (5 revolutions).

As expected, the results shown in Figures 4, 5 and 6 prove that when WENO scheme is
applied, the solution becomes smoother than the one which uses cubic Lagrange interpola-
tor. Smoothness indicators computed as in equation (3), (4) and (7) lead to quite similar
solution and better accuracy than for the cases of βk defined in equation (5) (not shown)
and (6), when some of the vortices in the reference solution disappear.

Figure 4: Sharp warm bubble: cubic Lagrange interpolator (left), quasi - monotonic version of cubic Lagrange
(center) and ENO (right)

5



Figure 5: Sharp warm bubble: WENO scheme, p=2, different definitions for βk: eq. (3), (4), (6) and (7), from
left to right

Figure 6: The same as Figure 5 but with p=0.5.

For the same definitions of smoothness indicators, setting value of p either 2 or 3 gives
similar results; we show results only for p=2. Moreover, both values of this parameter
prove to be too smoothing in comparison with the solution provided by p=0.5 (Figure
6), which seems to be the most similar to the reference solution. Besides, p=0.5 and
βk computed according to definition (3) or (7) remain the best candidates also when the
scheme is applied only in horizontal dimension.

Figure 7: Sharp warm bubble: cubic Lagrange (left), WENO scheme applied only in horizontal, βk as in eq. (3):
p=0.5 (center), p=2 (right)

Another step in the evaluation was to visualize the way this scheme chooses the inter-
polation stencil. The plots below (Figure 8) show the stencils corresponding to the highest
value of weights ωk (k=1,2,3), in horizontal dimension (latitude) in the second layer of the
whole 3D-interpolation grid used (see [5] for details). Parameter IWLOC (in subroutine
LAIWENO) is equal to 1 when the highest weight was obtained on the central stencil
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(white color), 2 for the right stencil (red color) and 3 for the left stencil (blue color). It
can be seen in Figure 8 that the WENO scheme behaves as expected near discontinuities,
for example, the right stencil is chosen mostly on the left side of the bubble’s vortices, the
left one on the right side and central stencil elsewhere. One can see that for WENO with
p=2 lateral stencils are used more often then for WENO with p=0.5 and cubic Lagrange
interpolator (which apparently uses always the central stencil).

Figure 8: Stencil choice, WENO scheme after 80 steps, βk as in eq. (3): p=0.5 (left) and p=2 (right)

Furthermore, in order to assess where under/overshootings appear for distinct inter-
polators, parameter IPARQM was introduced in subroutine LAIWENO (and LAITRI, for
the case of cubic Lagrange interpolator). This parameter is set to 1, when the interpolator
overshoots, 2 when it undershoots and 0 when the interpolator stays within the bounds
given by values of the function to be interpolated, and was obtained using a similar ap-
proach as for the case of quasi-monotonous treatment of interpolations, found in subroutine
LAITRI. With WENO scheme applied in both horizontal and vertical directions, IPARQM
was plotted either for the vertical direction only (see Figures 9, 10 and 11 top) or the hor-
izontal direction only, for the second layer of the six used in the whole 3D-interpolation
grid (see Figure 11 bottom).

Figure 9: IPARQM (vertical direction), sharp warm bubble, cubic Lagrange: after 40 steps (left), after 60 steps
(center) and after 80 steps (right)
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Figure 10: IPARQM (vertical direction), sharp warm bubble, WENO scheme, βk as in eq. (3), p=2: after 40
steps (left), after 60 steps (center) and after 80 steps (right)

Figure 11: IPARQM (in vertical - first row, in horizontal - second row), sharp warm bubble after 80 steps: cubic
Lagrange (left), WENO scheme, βk as in eq. (3), p=0.5 (center), and p=2 (right)

It can be seen that both schemes lead to overshooths in specific areas of the bubble.
Moreover, p=0.5 leads to comparable results to cubic Lagrange interpolation, for over-
shoots computed either in vertical or in horizontal direction. In addition, the values of
these under/overshootings were analysed. These were computed under variable ZOVER,
in subroutine LAIWENO (and LAITRI, for the case of cubic Lagrange interpolator). Fig-
ure 12 shows the values of ZOVER computed in horizontal direction, for the second layer
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of the six used in the whole 3D-interpolation grid (with WENO scheme applied in both
horizontal and vertical directions). used in the whole 3D-interpolation grid (with WENO
scheme applied in both horizontal and vertical directions).

Figure 12: Sharp warm bubble after 80 steps: cubic Lagrange (left), WENO scheme, βk as in eq. 3, p=0.5
(center) and p=2 (right)

It can be seen in Figure 12 that after 80 steps, the two values of p lead to different
results. When p is set to 2, overshoots have smaller values (analogous result could be
also observed in Figure 5). At the same time, the case with p=0.5 presents slightly less
overshoots with cubic Lagrange interpolation.

4 Conclusion

The WENO (Weighted essencially non-oscillatory) scheme was implemented to semi-
Lagrangian interpolations of the model ALADIN with several possible definitions. Overall,
the results show that the WENO scheme, for all definitions of smoothness indicators and
values of parameter p that were tested, produces slightly smoother solution than cubic
Lagrange interpolator. To conclude, the best choice for the smoothness indicators was
the one in equation (3), with all derivatives (up to third order) of the reconstruction
polynomials taken into consideration. The case with p=0.5 showed increased accuracy
than p=2 and p=3. Besides, the implementation gives fifth order Lagrange interpolation
in case βk are set to zero.

We may say that interpolations are subject of a trade off between accuracy and noise
production near discontinuities. More smoothing schemes give less over/undershoots while
more accurate results suffer from noise created near sharp gradients or discontinuities in
the interpolated field.

It seems to us that slight improvement in the production of over/undershoots observed
for the best behaving choice of the βk and p parameters (βk according to definition (3)
and p=0.5) does not compensate the increase in the computational cost of the new WENO
scheme compared to the classical cubic Lagrange solution.

Acknowledgements: I would like to thank my supervisors for their useful advice and
suggestions.
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