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1 Formulation

This short note is analysis of properties of vertical linear laplacian operator dis-
retized with finite element method.

The eigenvalues of discrete laplacian must be real and negative in order to
ensure the stable time stepping with Crack-Nicholson scheme (centered implicit
scheme).

2 Laplacian in mass based coordinate system

Linear vertical laplacian operator in mass coordinate π = A(η) +B(η)πs is

form1 : L∗X = π∗

m∗

∂
∂η

(

π∗

m∗

∂
∂η

+ 1
)

q̂ (1)

resp.

form2 : L∗X = 1
m∗

∂
∂η

(

π∗2

m∗

)

∂q̂
∂η

+
(

π∗

m∗

)2
∂2q̂
∂η2

(2)

with m∗ = ∂π∗

∂η
and q̂ = log p

π
.

3 Finite element method

We discretized derivative, second derivative and integral operator. We use no-
tation g(f(η)) for general representation of these operators. We discretize the
differential form

g (f(η)) = d(η) (3)
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We expand f(η) =
∑L

i=1 f̂iBi(η) and d(η) =
∑L

i=1 d̂iDi(η). Having f(η)
sampled on L model levels, we can transform it from physical to VFE space as
f(ηk) =

∑L
i=1 f̂iBi(ηk). The same holds for d(η).

We use two independent set of spline basis functions B and D. When we
substitute these expansions into differential form we obtain

L
∑

i=1

f̂ig (Bi(η)) =

L
∑

i=1

d̂iDi(η). (4)

Weak form of differential form is obtained with arbitrary set of L weighting
functions w

L+1
∑

i=0

[
∫ 1

0

g (Bi(η))wj(η)dη

]

f̂i =
L+1
∑

i=0

[
∫ 1

0

Di(η)wj(η)dη

]

d̂i j = 1, . . . , L.

(5)
Spline basis functions B, D and w are independent. When we put B = D =

w then the method leads to Galerkin method. We investigate Galerkin method
in following sections.

4 Finite element discretisation with B-splines

and regular vertical σ levels

The sigma coordinate is limit case of η coordinate when A(η) = 0 and σ = π
πs
.

The laplacian operator in σ coordinate is

form1 : L∗X = σ ∂
∂σ

(

σ ∂
∂σ

+ 1
)

q̂ (6)

resp.

form2 : L∗X = σ
(

2 ∂
∂σ

+ σ ∂2

∂σ2

)

q̂. (7)

Vertical domain is sampled with L regular layers. The interfaces between
layers are half levels with σl̃ =

l
L
, l ∈ (0, ..., L). Full levels are in the middle of

layers with σl =
σ
l̃
+σ

l̃−1

2 , l ∈ (1, ..., L).

The eigenvalues of FE discretized laplacian operator are analyzed with re-
spect to chosen boundary conditions (BCs). The BCs are incorporated into
basis functions by controlling the multiplicity of boundary knot sequence.

The general spline basis of order C is defined using internal knots sequence
ti = σi+C

2

, i ∈ 1, ..., L− C. The knots sequence is further completed by bound-

ary knots with multiplicity C at model top and model surface. When we require
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boundary condition Bi = 0, i ∈ (0, ..., L) at some boundary we simply decrease
the multiplicity of knot by 1 at that boundary and move that knot into internal
domain. When we require boundary condition

(

∂B
∂σ

)

i
= 0, i ∈ (0, ..., L) at some

boundary we decrease the multiplicity of knot by 2 at that boundary and move
those 2 knots into internal domain.

We define following 5 sets of basis functions

noBCs general spline basis with multiplicity of knots at boundaries C. The
knot sequence of cubic spline basis (C = 4) and regular 5 levels is t =
(0, 0, 0, 0, 1

2 , 1, 1, 1, 1). The basis is plotted at Figure 1 (a).

TBC0 spline basis with Bi(σ = 0) = 0, i ∈ (0, ..., L). Multiplicity of top knot
is C − 1. The knot sequence of cubic spline basis (C = 4) and regular 5
levels is t = (0, 0, 0, 3

10 ,
1
2 , 1, 1, 1, 1). The basis is plotted at Figure 1 (b).

BBC0 spline basis with Bi(σ = 1) = 0, i ∈ (0, ..., L). Multiplicity of surface knot
is C − 1. The knot sequence of cubic spline basis (C = 4) and regular 5
levels is t = (0, 0, 0, 0, 1

2 ,
7
10 , 1, 1, 1). The basis is plotted at Figure 1 (c).

TBCD0 spline basis with
(

∂B
∂σ

)

i
(σ = 0) = 0, i ∈ (0, ..., L). Multiplicity of top knot

is C − 2. The knot sequence of cubic spline basis (C = 4) and regular 5
levels is t = (0, 0, 1

10 ,
3
10 ,

1
2 , 1, 1, 1, 1). The basis is plotted at Figure 1 (d).

BBCD0 spline basis with
(

∂B
∂σ

)

i
(σ = 1) = 0, i ∈ (0, ..., L). Multiplicity of surface

knot is C−2. The knot sequence of cubic spline basis (C = 4) and regular
5 levels is t = (0, 0, 0, 0, 1

2 ,
7
10 ,

9
10 , 1, 1). The basis is plotted at Figure 1

(e).

The respective eigenvalues of VFE discretized laplacian equivalent of form1
[6] resp. form2 [7] are plotted in complex plane on Figure 2. We see that only
form2 with BBC Bi(σ = 1) = 0, i ∈ (0, ..., L) and

(

∂B
∂σ

)

i
(σ = 1) = 0, i ∈

(0, ..., L) leads to real and negative eigenvalues.

We conclude that due to stability requirements we have to use in
FE discretized vertical laplacian operator boundary condition B(σ =
1) = 0 or ∂B

∂σ
(σ = 1) = 0.

Further we will investigate discretisation of form2 only with proper BBC.

5 Finite element discretisation with B-splines.

Position of knots and regularity of σ levels.

In previous section we assumed definition of knots derived from full levels
values of σ. Now we define knot sequence differently as ti = sin(π2

i
L
), i =

1 + C
2 , L −

C
2 + 1. Corresponding basis functions and eigenvalues of laplacian

operator for 5 levels are on Figure 3. The eigenvalues are complex.
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We assume that knot sequence must be chosen consistent with
full level values of σ in order to ensure laplacian eigenvalues to be
real and negative.

Further we investigate non-regular level distribution σl̃ =
(

l̃
L

)0.1

, l̃ ∈ (0, ..., L).

Full levels are still averages of half levels. The internal knots are consistent with
definition of full levels ti = σi+C

2

, i ∈ 1, ..., L− C + 1. Multiplicity of knot at

model bottom is C − 1 for proper BBC treatment. Distribution of levels is very
sparse at model top and extremely dense near model surface. Corresponding
basis functions and eigenvalues of laplacian operator for 5 levels are on Figure 4.
We see that the laplacian eigenvalues are real and negative even for this highly
non-regular distribution of vertical levels.

We investigate another non-regular definition σl̃ =
(

l̃
L

)3

, l̃ ∈ (0, ..., L). The

levels close to model top are much denser than those close to model surface.
Corresponding basis functions and eigenvalues of laplacian operator for 5 levels
are on Figure 5. We see that the laplacian eigenvalues are complex.

We conclude that the levels must be regular resp. denser to-
wards the bottom half of model domain. However, we did not find
any explicit relationship between the half/full levels distribution and
eigenvalues of FE discretized laplacian operator. This issue remains
opened.

6 Basis and weighting functions

Here we will relax Galerking method and we will assume that basis functions
B, D and w are different. We will investigate how setting zero BBC in each of
them influences laplacian eigenvalues.

All tests in this section used regular σ levels distribution. Only one of spline
basis was defined with investigated BBC. The eigenvalues for 5 levels are plotted
on Figure 6. The real and negative eigenvalues are obtained only, when zero
BBC is introduced to basis functions B. These are basis functions of input func-
tion. This means that theoretically linear laplacian shall be applied on quantity
which holds this condition.

There is first and second derivative operator in laplacian. We will now ap-
ply zero BBC at input spline basis B independently on each. Results are shown
on Figure 7. We see that crucial condition seems to be the the BBC for first
derivative operator in laplacian term.
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7 Analysis of eigenvalues of VFE laplacian in η

coordinate

We start with the continuous definition of implicit vertical coordinate η

π(η) = Ã(η)πref +B(η)πs. (8)

We introduced Ã(η) = A(η)
πref

with πref being auxiliary constant. Usually we

set πref = 101325Pa. Our coordinate is implicit, but for the purpose of finite
element method must be explicitly defined. We adopt following definition

η = Ã(η) +B(η). (9)

It ensures that η converges towards σ in the sense that when πref = πs then
∂π(η)
∂η

= πs as in the case of σ. Therefore η can be seen as a departure from σ

coordinate due to difference between πref and πs.

We have to realize the limitation of η. The vertical derivative of π must hold
∂π
∂η

> 0 for any values of πs with fixed πref . Physical it means that mass must
be decreasing with height.

We define Ã and B (proposal of Jan Masek) in the following way

τ = (3− 2η)η2 (10)

B = ητ (11)

Ã = η(1− τ). (12)

We can easily check that this choice holds [9]. The functions are plotted on
Figure 8.

This definition satisfies ∂π
∂η

> 0 for all surface pressures πs > 41281Pa. This
limiting value of surface pressure is further denoted as πmin. Taking into ac-
count that the surface pressure at Mount Everest as approx. 30000Pa, we can
not use this definition for high resolution global model. However, it is suffi-
ciently representative for the purpose of this analysis.

The minimum surface pressure πmin that satisfy condition ∂π
∂η

> 0 is the

solution of ∂2π
∂η2 = 0 on interval 0 ≤ η ≤ 1.

The discrete values of η are defined at half levels in the same manner as σ

in sections above

ηl̃ =

(

i

L

)γ

, i = (0, ..., L). (13)
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We consider the case γ = 0.3. This means that the model levels are non-
regular with increasing density towards surface. We present result for 15 level
sampling in this section (we found empirically that analysis with 5 levels is not
sufficient).

Cubic spline basis with Bsurf = 0 in the both derivative operators was used.
This ensures the correct eigenvalues of laplacian in the case that η −→ σ (see
above sections).

We have computed the eigenvalues of FE discretized operator for πmin <

πs < 110000Pa. The maximum imaginary part of all eigenvalues and the maxi-
mum of real part of all eigenvalues as a function of πs is plotted on Figure 9. We
see that for the whole tested range of pressured the eigenvalues of FE laplacian
are real and negative.

7.1 Eigenvalues of C1 constrain

This subsection is a bit out of topic, but is for those who are involved in model
dynamics development.

The C1 constrain is defined as

C1 = −G∗

∗ S∗ +G∗ + S∗

−N∗. (14)

The G∗ operator is the vertical integral operator from model surface to
model top. Its value at model top is unbounded as it project pressure levels
into geopotential levels. And geopotential is unbounded at top of atmosphere.

The S∗ is vertical integral operator from model top to surface. The values
of this operator are bounded and well defined. This operators transform local
mass information into mass above specific place.

The operator N∗ is S∗ operator computed over the whole depth of atmo-
sphere. Physically, this operator transform vertical profile of quantities into
surface mass (pressure).

We have defined two sets of operators.

1. IntTop - the FE vertical integral operator from top to η with stiff matrix

L
∑

i=1

∫ 1

0

f̂i

(
∫ η

0

Bi(τ)wj(τ)dτ

)

dη, j = (1, ..., L). (15)

with boundary conditions Dtop = 0 and ∂B
∂η top

= ∂B
∂η surf

= 0
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2. IntBot - the FE vertical integral operator from surface to η with stiff
matrix

L
∑

i=1

∫ 1

0

f̂i

(
∫ 1

0

Bi(τ)wj(τ)dτ −

∫ η

0

Bi(τ)wj(τ)dτ

)

dη, j = (1, ..., L).

(16)

with boundary conditions Dsurf = 0 and ∂B
∂η top

= ∂B
∂η surf

= 0.

The operators G∗, S∗ and N∗ are then defined purely from one of them to

ensure integration property
∫ 1

0
f(η)dη =

∫ η

0
f(η)dη +

∫ 1

η
f(η)dη.

The boundary condition imposed on input function ∂B
∂η top

= ∂B
∂η surf

= 0 is

purely empirical. We try to control potential overshooting in extrapolated parts
of domain.

The spectral radius of C1 computed with the two sets of operators, for the
vertical levels settings described in previous section is plotted on Figure 10. It
is apparent that the C1 expressed with FE integral operator starting from top
has better properties.
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Figure 1: The basis functions for 5 regular levels and various multiplicity at
boundaries. Using distinct set of basis functions we can control BCs of differ-
ential operator discretized using FE method.
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Figure 2: Eigenvalues in complex plane of laplacian operator discretized with
FE method. Columns are two distinct formulations of laplacian operator, rows
are basis functions with various BCs plotted on Figure 1
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Figure 3: Cubic spline basis of knot sequence independent on full level values
of η on the left, relevant eigenvalues of laplacian operator on the right.
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Figure 4: Cubic spline basis for non-regular levels σl̃ =
(

l̃
L

)0.1

on the left and

relevant eigenvalues of laplacian operator on the right. Red dots are half levels
values of σ, dark dots are knots.
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Figure 5: Cubic spline basis for non-regular levels σl̃ =
(

l̃
L

)3

on the left and

relevant eigenvalues of laplacian operator on the right. Red dots are half levels
values of σ, dark dots are knots.
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Figure 6: The eigenvalues of laplacian operator when zero BBC is applied only
in one of spline basis.
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Figure 7: The eigenvalues of laplacian operator when zero BBC is imposed on B

spline basis only in first derivative operator (left) and only in second derivative
operator (right).
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Figure 8: Our choice of Ã(η) and B functions.
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Figure 9: The maximum imaginary and real parts of eigenvalues of FE dis-
cretized laplacian operator for 50000Pa < πs < 110000Pa computed with η

coordinate. We use 15 non-regular levels and BBC 0 assumed for input quan-
tity. This BBC is build implicitly inside the cubic spline basis functions B.
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Figure 10: The spectral radius of C1 as a function of πs for two different sets
of integral operators with boundary conditions ∂B

∂η top
= ∂B

∂η surf
= 0
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