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1 Introduction

Recent developments in ALADIN-NH (PC scheme, prognostic variable d4, diagnostic
BBC, SITRA) resulted in efficient and robust dynamical core, which can be assumed
satisfactory in wide range of regimes. Configuration sl2tl + d4 + SITRA was found so
stable that it does not require PC iterations (SI correction is sufficient for stability).
However, currently there are known two remaining problems concerning the new
dynamical core:

1. Semi-lagrangian chimney problem was solved either by advection of w (C. Smith,
[3]) or by diagnostic BBC (P. Smoĺıková, [6]). But it was detected in [1] that using
horizontal diffusion can create chimney even for eulerian advection scheme.

2. As was shown by J. Vı́voda, numerical solution in André Robert’s bubble test
becomes deteriorated when advection of d variable is used. The problem can be
avoided by advection of w developed by C. Smith (variable d0) and generalized by
J. Vı́voda (variables d3 and d4, but only for non-extrapolating PC scheme).

Work described in this report was partly a continuation of my previous stay in Prague
(May–June 2003), partly a reaction to some recent results. Main target was to answer
following questions:

• What is the mechanism of eulerian chimneys? Is there some connection with
semi-lagrangian ones?

• Does bubble test indicate some fundamental problems connected to d-type
prognostic variables?

• Is advection of w unavoidable?
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2 Chimney problem and BBC formulation

In my previous report [1] it was stated that chimneys are connected to non-linear
regimes, which makes their understanding difficult. This statement turned out to be
false, since in [6] semi-lagrangian chimney was observed also for linear potential flow.
Question arose whether horizontal diffusion can produce eulerian chimney in this regime.
R. Brožková confirmed that the answer is positive. As a next step she proposed to test
if horizontal diffusion will restore chimney for semi-lagrangian scheme with advection of
w or diagnostic BBC. This was checked in subsequent experiments.

2.1 Setup of experiments

Experiments were done using 2D vertical plane model. Non-linear non-hydrostatic
(NLNH) orographic flow was used. This is the regime where eulerian chimney was
observed for the first time:

• Initial state:

– temperature profile with constant Brunt-Väisälä frequency N = 0.01 s−1

up to tropopause at height 21 km, isothermal above tropopause

– sea level temperature 293K

– tropopause temperature 133K

– constant wind profile with V = 10ms−1

– sea level pressure 101 325Pa

• Orography: Bell shaped mountain.

height: h = 1000m
half-width: a = 1000m

• Dimensionless flow parameters:

CL =
Nh

V
= 1.0 (CL ¿ 1⇒ linear flow)

CH =
V

Na
= 1.0 (CH ¿ 1⇒ hydrostatic flow)

• Geometry:

∆x [m] 200 (a = 5∆x)

∆z [m] ≈300 (regular z-levels)

NDGUX 128 (C+I zone)

NDGL 128 (no E zone)

NBZONG 14 (I zone)

NSMAX 42 (quadratic grid)

NFLEVG 100 (30 levels above tropopause)

• Vertical coordinate: σ

• Coupling files: Identical with initial file (time constant LBC).
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• Common integration settings:

tSTOP [s] 5000

NPDVAR 2

NVDVAR 3

SIPR [Pa] 90000.

REPONBT [m] 20000.

REPONTP [m] 29500.

HDIRT [s] 0.

HDIRVOR [s] 0.

VESL 0.

XIDT 0.

• Scheme dependent integration settings:

euler sl2tl

TSTEP∗ [s] 1. 10.

REPONTAU∗∗ [s] 100. 50.

RCMSLP0 0. 1.

SITR [K] 220. 300.

SITRA [K] 220. 50.

LPC OLD FULL

NESC

NSITER 1 3

(∗) CFL criterion would enable to use timestep ∆t = 2.5 s with eulerian scheme.
In order to get reference solution, timestep was reduced to 1.0 s.

(∗∗) Due to the bug in SUPONG, sponge applied in 3 time level scheme is two
times stronger than in 2 time level scheme (using the same absorption timescale
REPONTAU). That is the reason why different value of REPONTAU was used with 2
time level scheme.

• Experiment dependent integration settings:

figure scheme HDIRDIV remark
HDIRVD

[s]

1 euler 0. eulerian
2 5. reference

3 sl2tl 0. semi-lagrangian
4 5. reference

5 sl2tl + LGWADV 0. advection of w
6 5.

7 sl2tl + LRDBBC 0. diagnostic BBC
8 5.

When horizontal diffusion was used, it was applied only on horizontal divergence
D and vertical divergence d. Temperature T and vorticity ξ were not diffused
(vorticity in 2D model is zero).
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2.2 Experimental results

Figures 1–8 show integration results after 5000 s. Basic flow is from left to right. Field
of vertical velocity w is displayed. It can be observed that:

• Reference eulerian solution is a bit noisy (fig. 1). Turning on horizontal diffusion
removes the noise but creates chimney (fig. 2).

• Reference semi-lagrangian solution is less noisy, but it contains chimney (fig. 3).
Turning on horizontal diffusion amplifies the chimney (fig. 4).

• Advection of w (fig. 5) or diagnostic BBC (fig. 7) removes semi-lagrangian chimney.
Obtained solutions are slightly different, especially for the first maximum behind
the mountain.

• Turning on horizontal diffusion restores chimney in semi-lagrangian mode both for
advection of w and diagnostic BBC (fig. 6, 8).

2.3 Theoretical analysis and proposed solutions

Experimental results revealed that horizontal diffusion applied on variables (D, d) creates
a chimney, independently on used advection scheme (it would therefore be more precise
to speak about diffusive chimney rather than eulerian chimney). This indicates that
diffusive chimney might not be related to model discretization. Taking into account the
fact that diffusive chimney can be observed also in linear regimes lead to the attempt
examine the problem using linearized continuous equations.

Analysis based on linear Long model was performed by P. Bénard and it was a great
success. It is outlined in appendix A. Main result can be illustrated on equation (4)

from [1], which prescribes BBC for the term
∂p̃
∂π

consistently with dynamical equations:

(
∂p̃

∂π

)

S

=

[

−
RT

p
∇p−∇φ+ V

]

S

· ∇φS + JS − gWS

g2 + (∇φS)2
(1)

(

JS =
∂2φS

∂x2
uS

2 + 2
∂2φS

∂x∂y
uSvS +

∂2φS

∂y2
vS

2

)

Occurence of source terms V and W in formula (1) is crucial. They should consist of
three contributions:

1. Coriolis acceleration

2. horizontal diffusion

3. physical tendencies

However, in the model only Coriolis acceleration is incorporated into BBC. Contributions
from horizontal diffusion and physical tendencies are missing. This was not recognized
in [1]. Analysis of Long model showed that diffusive chimney is caused by ignoring
second contribution. Further problems can be expected for diabatic model, where also
third contribution can be non-zero.

Incorporating physical tendencies into BBC should not be a problem, especially when
the physics is computed before dynamics. Situation is more complicated for horizontal
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diffusion, since it is computed in spectral space at the end of timestep, while BBC is
evaluated in gridpoint space during computation of RHS. There are several possible
solutions, using different degrees of approximation:

• Exact solution would require transformation of fields vL, wL̃ into spectral space,
computation of diffusion terms1 −KD∇

4vL, −Kd∇
4wL̃ and their transformation

back to gridpoint space. This procedure would have to be repeated in each
timestep.

• Analysis of linear Long model suggests that dominant contribution of horizontal
difussion to the BBC comes from the term −Kd∇

4wL̃, which can be approximated
as −Kd vL · ∇

(
∇4φL̃

)
. Main advantage over exact solution is due to the fact that

surface geopotential φL̃ does not depend on time. It would therefore be enough to
compute term ∇

(
∇4φL̃

)
at the beginning of integration, transform it to gridpoint

space and store it.

• Newly developed SLHD (Semi-Lagrangian Horizontal Diffusion) could simplify the
things, because it is computed in gridpoint space.

Remark:

In the model formula (1) is not used directly, because some quantities are not available
at surface level L̃. It is therefore modified using assumption vL̃ = vL:

g2

(
∂p̃

∂π

)

L̃

=

[

−
RT

p
∇p−

(
∂p̃

∂π
+ 1

)

∇φ+ V

]

L

· ∇φL̃ + JL − gWL̃ (2)

Main problem with formula (2) is that it contains term
(
∂p̃
∂π

)

L
, which requires half

level values p̃L̃ and p̃L̃−1. In current code surface value is determined by extrapolation

as p̃L̃ = p̃L, which corresponds to
(
∂p̃
∂π

)

L̃
= 0. This may be in contradiction with

expression (2). More consistent approach was studied in [1], but surprisingly there was
almost no impact on model results.2

2.4 Conclusions

Main conclusions were drawn by P. Bénard. They can be summarized into these points:

• Chimney problem is always caused by inconsistency between dynamical equations
and BBC.

• Diffusive chimney is caused by inconsistency between diffused d-equation and BBC
obtained from undiffused w-equation.

• Semi-lagrangian chimney is caused by numerical inconsistency between dynamical
equations discretized in semi-lagrangian manner and BBC diagnosed in eulerian
way.

1In model, horizontal diffusion is applied to vorticity ξ and horizontal divergence D via source terms
−Kξ∇

4ξ, resp. −KD∇
4D. When Kξ 6= KD, equivalent source term for velocity v does not take the

simple form −KD∇
4
v, but is given by more cumbersome formula:

u: −(KD∂
2
x +Kξ∂

2
y)∇

2
u− (KD −Kξ)∂

2
xy∇

2
v

v: −(Kξ∂
2
x +KD∂

2
y)∇

2
v − (KD −Kξ)∂

2
xy∇

2
u

2Remark for Alena: Yes, I have used the new master.
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3 Bubble tests

During tests of PC scheme J. Vı́voda noticed patological behaviour in bubble experi-
ments when advection of d variable was used. It could be suppressed by advecting w.
Even before these tests it was pointed out by C. Smith that d-type prognostic variables
have several drawbacks compared to w. They are listed in [3]. Two of them might be
responsible for problems in bubble experiments:

• bigger discretization error due to more complicated RHS of d-equation

• bad error propagation characteristics due to so called Z-term in d-equation

Mentioned drawbacks can be explained on prognostic equations for w and d3. They can
be found in [5] and rearranged into the form:

dw

dt
= g

∂p̃

∂π
+W (3)

dd3

dt
= g2 ∂

∂φ

∂p̃

∂π
+ g

∂W

∂φ
− d3

[

d3−
∂v

∂φ
· ∇φ

︸ ︷︷ ︸

X

]

−
∂v

∂φ
· ∇(gw)

︸ ︷︷ ︸

Z

(4)

d3 ≡
∂

∂φ
(gw) = −

p

mRT

∂

∂η
(gw)

gw = gwS +

∫ 1

η

mRT

p
d3 dη (5)

RHS of equation (4) contains several problematic terms for discretization. First term

evaluated at lowest full level requires BBC for derivative
∂p̃
∂π

. As was mentioned
in section 2, dynamically inconsistent BBC for this term is responsible for chimney
formation.

Another problematic terms are X and Z. Their discretization at full levels requires
use of vertical averaging. Approach used in model is not optimal. C. Smith proposed
alternative approach in [3], which has generally smaller leading error term for irregularly
spaced levels. Testing of this approach was not finished in [1].

One more problem connected to Z-term is the fact that it contains gradient of w.
Velocity w must be diagnosed using formula (5). Undesirable feature of vertical integral
occuring in (5) is that it immediately propagates errors contained in fields πS , p, T , d3

upward.
All mentioned problems could be avoided by using w as prognostic variable. But

there are two main obstacles to do this:

1. Stability of SI scheme for prognostic variable w is insufficient. It is equivalent to
stability of variable d0.

2. Velocity w is half level quantity. Using it as prognostic variable would require
search of extra origin points for final points located at half levels. This is against
ALADIN philosophy where effort was made to have all prognostic variables as full
level quantities.

Considering first point, advection of w can be viewed as a compromise. Variable w is
used in gridpoint computations (simple RHS, no Z-term), variable d3 or d4 during SI
correction (sufficient stability). As for second point, extra origin points are still needed.
That is why different solution is searched.
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Warning:

Dry atmosphere (R = Rd) was assumed in equations (3)–(5).

3.1 Setup of experiments

Experiments were done using 2D vertical plane model, following André Robert’s warm
and cold bubble test described in [2]:

• Initial state:

– neutral background profile (constant potential temperature θ0 = 300K)
superposed with bubble perturbations of the form:

θ′ =







A ; r ≤ a

A exp

[

−
(r − a)2

s2

]

; r > a

r = (y − y0)
2 + (z − z0)

2

A a s y0 z0
[K] [m] [m] [m] [m]

warm bubble 0.50 150 50 500 300

cold bubble -0.15 0 50 560 640

– resting, vertically balanced state∗

– sea level pressure 101 325Pa

(∗) In article [2] initial state was balanced horizontally. There was no horizontal
pressure gradient force, only buoyant force in the vertical. For ALADIN-NH it
was simpler to prepare vertically balanced initial state (no buoyant force) with
some resulting horizontal pressure gradient force. Since the potential temperature
perturbation θ′ is small, there is only slight difference between the two initial
states. Moreover, adjustment process takes part during early stages of integration,
radiating away small initial imbalance.

• Orography: Flat.

• Geometry:

∆x [m] 10

∆z [m] ≈10 (regular z-levels)

NDGUX 120/100 (C+I zone)

NDGL 120/100 (no E zone)

NBZONG 0 (no I zone)

NSMAX 39/32 (quadratic grid)

NFLEVG∗ 120/100

(∗) In ALADIN-NH elastic TBC is used. It has the form pT = 0 (more general
case pT = const is not coded). In order to prevent huge jump in resolution and
pressure at the top, additional 30 levels were added to the top of model domain.
Their spacing ∆z increases by factor 1.2 between adjacent layers. They are not
shown in the plots.
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• Vertical coordinate: η

A = σ(1− w) w = (3− 2σ)σ2

B = σw σ = A+B

• Coupling files: None (periodic domain).

• Common integration settings:

tSTOP [s] 600

NPDVAR 2

NVDVAR 3

SIPR [Pa] 90000.

VESL 0.

XIDT 0.

• Scheme dependent integration settings:

euler sl2tl

SITR [K] 250. 350.

SITRA [K] 250. 100.

LPC FULL

NESC

NSITER 0 1

• Experiment dependent integration settings:

figure scheme ∆t HDIRDIV HDIRVOR Ly, Lz reverted
HDIRVD HDIRT

[s] [s] [s] [km]

9–12 sl2tl + LGWADV 5.0 0. 0. 1.2 no
13–16 5.0 0. 0. 1.2 yes
17–20 5.0 0. 0. 1.0 yes

21 sl2tl 5.0 0. 0. 1.2 no
22 1.0 0. 0. 1.2 no
23 0.2 0. 0. 1.2 no
24 5.0 0. 0. 1.2 yes

25 sl2tl + LRDBBC 5.0 0. 0. 1.2 no
26 1.0 0. 0. 1.2 no
27 0.2 0. 0. 1.2 no
28 5.0 0. 0. 1.2 yes

29 euler 1.0 0. 0. 1.2 no
30 1.0 5. 25. 1.2 no
31 0.2 5. 25. 1.2 no
32 1.0 5. 25. 1.2 yes

3.2 Experimental results

Warm and cold bubble test in [2] was performed on domain 1×1 km with rigid lid TBC.
During integration rising bubble started to interact with upper boundary and distort. In
ALADIN-NH elastic TBC is implemented. That is why integration domain was enlarged
to 1.2×1.2 km, so that rising bubble is not influenced by upper boundary during first
600 s.
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On figures 9–32 field of potential temperature perturbation θ′ = θ − θ0 is displayed.
Following observations can be made:

• Results from sl2tl scheme with advection of w are shown on fig. 9–12. They can
be compared with fig. 8a–8d in [2]. Agreement is very good. There is a weak noise
present in ALADIN-NH fields (fig. 11, 12). Top of warm bubble on fig. 12 is not
flat as in the article because of different upper boundary.

• When Boussinesq approximation is applicable, reverted bubble test should give the
same results as direct test. Reverted test can be prepared by vertical mirroring of
initial state with change of sign for vertical velocity w and potential temperature
perturbation θ′. After integration this procedure is repeated in order to get results
comparable with direct test. See appendix B for more details.

Experiment confirms that results of reverted bubble test (fig. 13–16) are very close
to those of direct test (fig. 9–12). Slight difference can be seen at lower part of
warm bubble (compare fig. 10 and 14). See remark at the end of appendix B for
possible explanations.

• Reverted bubble test enables to simulate rigid lid TBC even with ALADIN-NH,
because upper and lower boundaries are interchanged. This trick makes it possible
to reproduce results from [2] obtained on 1×1 km domain (fig. 17–20). Again, weak
noise can be seen in ALADIN-NH solution (fig. 19, 20).

• Problems occur when sl2tl scheme with advection of d3 is used. Solution is strongly
distorted (fig. 21). Distortion does not disappear when shorter timesteps are used
(fig. 22, 23). Reverted test gives better results, which are however not consistent
with direct test (fig. 24).

• Using sl2tl scheme with diagnostic BBC does not improve the things (fig. 25–28).
Results are similar as in previous case, especially for short timesteps.

• Eulerian scheme gives very noisy fields (fig. 29). Horizontal diffusion must be
applied in order to get acceptable results (fig. 30–32). Eulerian response is a bit
different from semi-lagrangian one (compare fig. 12 and 30), but the solution is
probably correct. There is no sensitivity shorter timestep (fig. 31). Reverted test
is in good agreement with direct test (fig. 32).

In all experiments noise was generated at the top of model domain. It contaminated
several uppermost levels during integration (they are not displayed in the plots). Noise
was strongest for eulerian scheme, then for problematic semi-lagrangian configurations.

Code with alternative discretization of terms X and Z was debugged and tested.
There was hardly any impact on bubble experiments.

3.3 Conclusions

• Model discretization of terms X and Z is not responsible for spurious behaviour in
bubble experiments. Alternative discretization had almost no impact on results.
This is not surprising, since in bubble test regular z-levels were used and in such
case both discretizations should be equivalent.

• Problems might originate from error propagation characteristics due to Z-term.
This is supported by the fact that advection of w suppresses spurious behaviour
as well as by asymmetry between direct and reverted bubble test.
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• Results from eulerian integrations seem to be in contradicton with previous point.
They should suffer from the same defficiencies as semi-lagrangian ones, because
Z-term is still present in d-equation. But this is not the case. It is therefore
probable that semi-lagrangian interpolations play some role in deteriorating
solution. It seems as if errors in diagnosing w were compensating for eulerian
scheme.
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4 Info section

4.1 Unfinished work

• Dynamically consistent BBC for term
∂p̃
∂π

was not coded. Experimental work will
be needed to decide which approximations in BBC formulation are acceptable.

• Question whether advection of w can be avoided remained open. Patological
behaviour in bubble experiments was not fully understood yet. Problems may
arise from error propagation characteristics. More research in this direction will
be needed, employing simplified models like the one described in [4].

4.2 Code info

All work was based on cycle 25t2. Several versions of the code were used:

30 = reference version + modifications from J. Vı́voda
(bugfix, SITRA)

31 = 30 + modifications from J. Vı́voda
(combination LGWADV + LPC_FULL + LPC_NESC enabled for all d variables)

33 = 31 + alternative discretization of terms X and Z

40 = reference version + modifications from P. Smoĺıková
(d4 bugfix, SITRA, LRDBBC)

Modified sources (voodoo):

~mma157/utemp/cycle_25t2/mod_30_ald/

mod_30_arp/

mod_31d30_ald/

mod_31d30_arp/

mod_33d31_ald/

mod_33d31_arp/

mod_40_ald/

mod_40_arp/

Sources + dependencies for compilation (lambda):

~mma157/work/cycle_25t2/dep_30_ald/

dep_30_arp/

dep_31_ald/

dep_31_arp/

dep_33_ald/

dep_33_arp/

dep_40_ald/

dep_40_arp/

Loading scripts (lambda):

~mma157/work/cycle_25t2/load/load_30_sx6

load_31_sx6

load_33_sx6

load_40_sx6
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Executables (archiv):

~mma157/bin/master_al25t2_30_sx6

master_al25t2_31_sx6

master_al25t2_33_sx6

master_al25t2_40_sx6

Integration scripts (sx6):

~mma157/m2d/exp/script_04/

5 Final remark

“Consistent lie is better than inconsistent truth.”

anonymous
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Appendix

A Long solution

This section briefly outlines analysis of diffusive chimney performed by P. Bénard. It is
done in linear framework using vertical σ coordinate and restricted to xσ plane. Most
notations are taken from ALADIN-NH documentation.

Model prognostic variables are horizontal divergence D, vertical divergence d (resp.
vertical velocity w), thermodynamic temperature T , NH pressure departure P and
logarithm of MSL pressure Q which replaces variable q = lnπS used in ALADIN-NH:

D ≡
∂u

∂x

d ≡ −g
1 + P

RT
σ
∂w

∂σ

P ≡
p− π

π
(p – true pressure, π – mass coordinate)

Q ≡ q +
φS

RT ∗
= lnπS +

φS

RT ∗

Background state for linearization is taken isothermal (constant temperature T ∗),
hydrostatically balanced, with flat orography φ∗S = 0 and uniform background wind u∗.
Background state is disturbed by introducing small orography perturbation φS and the
response of linearized system is studied. Stationary solutions are seeked. Perturbations
of prognostic variables T , Q are denoted T ′, Q′. For remaining variables primes are
omitted, since corresponding background values are zero.

Prognostic equation for perturbation variable X can be symbolically written in the
form:

dX

dt
= RHSX

Since stationary solutions of linearized system are examined, LHS of this equation can
be simplified:

u∗∇X = RHSX (∇ ≡ ∂x) (6)

When horizontal diffusion is applied on variable X, equation (6) becomes:

u∗∇X = RHSX −KX∇
4X

u∗∇X +KX∇
4X = RHSX

(u∗ +KX∇
3)∇X = RHSX

ūX∇X = RHSX (ūX ≡ u∗ +KX∇
3) (7)

Replacing u∗ by operator ūX is a very elegant way how to introduce horizontal diffusion
into equations. When operator ūX is applied on function eikx, eigenvalue ûX(k) can be
useful:

ūXeikx = ûX(k)eikx

ûX(k) = u∗ − ik3KX (8)

In subsequent text following vertical operators are used (function f must be defined
for σ ∈ [0, 1]):

(Gf)(σ) ≡

∫ 1

σ

f(σ′)

σ′
dσ′
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(Sf)(σ) ≡
1

σ

∫ σ

0

f(σ′) dσ′

(N f)(σ) ≡

∫ 1

0

f(σ′) dσ′

If ≡ f (I is identity)

∂̃ ≡ σ
∂

∂σ

L ≡ ∂̃(∂̃ + I)

There are many relations between these operators, most useful ones are listed below.
They are handy e.g. during derivation of structure equations:

GS = G + S −N

SG = G + S

∂̃S = I − S

∂̃G = −I

LS = ∂̃

LG = −(∂̃ + I)

LSG = −I

A.1 Analysis for prognostic variable d

In this case, with horizontal diffusion used only for variables D and d, linearized
prognostic equations describing stationary flow have the form:

ūD∇D = ∆[−RGT ′ +RT ∗(G − I)P −RT ∗Q′] (9)

ūd∇d = −
g2

RT ∗
LP (10)

u∗∇T ′ = −
RT ∗

cv
(D + d) (11)

u∗∇P = SD −
cp

cv
(D + d) (12)

u∗∇Q′ = −ND +
1

RT ∗
u∗∇φS (13)

Structure equation can be obtained from system (9)–(13) by eliminating all variables
except d:

∇

[

−
1

c2
ūDūdu

∗2∆+ u∗
(

ūd∆+ ūD
L

H2

)

+N2

]

d = 0 (14)

c ≡
cp

cv
RT ∗ H ≡

RT ∗

g
N2 ≡

g2

cpT ∗

General solution of equation (14) can be written as a superposition of particular solutions
having form:

d = d̂ eikxσiν−
1
2 (15)

k ∈ R d̂, ν ∈ C

Inserting (15) into structure equation (14) leads to dispersion formula giving relation
between dimensionless vertical wavenumber ν and horizontal wavenumber k:

ν2

H2
=

N2

u∗ûD
− k2 ûd

ûD

(

1−
u∗ûD

c2

)

−
1

4H2
(16)
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Now it is necessary to determine complex amplitude d̂ corresponding to monochro-
matic orographic forcing φS = φ̂S e

ikx. This can be done using free slip BBC together
with prognostic equation for w evaluated at surface:

gwS = u∗∇φS ūw∇wS = [g(1 + ∂̃)P]S

⇓

u∗ūw∆φS = [g2(1 + ∂̃)P]S

Inserting expressions φS = φ̂S e
ikx and P = P̂ eikxσiν−

1
2 into the last equation gives

formula for amplitude P̂:

P̂ = −
k2u∗ûw

g2

(

iν +
1

2

) φ̂S (17)

Polarization relation between amplitudes d̂ and P̂ can be obtained by analogical way
from equation (10):

ikûdd̂ =
g2

RT ∗

(

ν2 +
1

4

)

P̂ (18)

Elimination of P̂ from equations (17) and (18) gives:

d̂ = −
1

RT ∗

(

iν −
1

2

)

ik
u∗ûw

ûd
φ̂S (19)

Final step is to express vertical divergence field d(x, σ) using (19) and convert it
into vertical velocity field w(x, σ). This can be achieved employing linearized diagnostic
formula:

gw(x, σ) = gwS(x) +RT ∗

∫ 1

σ

d(x, σ′)

σ′
dσ′

Together with free slip BBC this leads to the result:

gw(x, σ) = iku∗φ̂S e
ikx

[(

1−
ûw

ûd

)

+
ûw

ûd
σiν−

1
2

]

(20)

Formula (20) can be further simplified realizing that horizontal diffusion for variables
d and w must be the same, i.e. ûd = ûw. This comes from the fact that prognostic
equation for d is obtained by vertical differentiation of prognostic equation for w. So
the solution (20) can be written as:

gw(x, σ) = iku∗φ̂S e
ikxσiν−

1
2 (21)

In current model formulation, however, horizontal diffusion for w is ignored when
deriving BBC for P. In other words Kw = 0 and thus ûw = u∗. When inserted into
equation (20) this gives:

gw(x, σ) = iku∗φ̂S e
ikx

[
(

1−
u∗

ûd
︸ ︷︷ ︸

chimney

)

+
u∗

ûd
σiν−

1
2

]

(22)

It can be seen immediately that when horizontal diffusion for variable d is turned on
(Kd > 0, ûd 6= u∗), spurious pattern without vertical structure appears in w field (22).
This is famous diffusive chimney. Remaining part of the solution is further distorted by

factor
u∗

ûd

, as is clear from comparison with (21).
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A.2 Analysis for prognostic variable w

In this case, with horizontal diffusion used only for variables D and w, linearized
prognostic equations describing stationary flow have the form:

ūD∇D = ∆[−RGT ′ +RT ∗(G − I)P −RT ∗Q′] (23)

ūw∇w = g(∂̃ + I)P (24)

u∗∇T ′ = −
RT ∗

cv

(

D −
1

H
∂̃w

)

(25)

u∗∇P = SD −
cp

cv

(

D −
1

H
∂̃w

)

(26)

u∗∇Q′ = −ND +
1

RT ∗
u∗∇φS (27)

Structure equation can be obtained from system (23)–(27) by eliminating all variables
except w. It is analogical to (14):

∇

[

−
1

c2
ūDūwu

∗2∆+ u∗
(

ūw∆+ ūD
L

H2

)

+N2

]

w = 0 (28)

General solution of equation (28) can be written as a superposition of particular solutions
having form:

w = ŵ eikxσiν−
1
2 (29)

k ∈ R ŵ, ν ∈ C

Inserting (29) into structure equation (28) leads to dispersion formula analogical to (16):

ν2

H2
=

N2

u∗ûD
− k2 ûw

ûD

(

1−
u∗ûD

c2

)

−
1

4H2
(30)

Determining complex amplitude ŵ corresponding to monochromatic orographic
forcing is straightforward in this case. It is sufficient to insert expressions φS = φ̂S e

ikx

and w = ŵ eikxσiν−
1
2 into free slip BBC:

gwS = u∗∇φS

⇓

gŵ = iku∗φ̂S (31)

Having expression (31), it is possible to write down vertical velocity field w(x, σ):

gw(x, σ) = iku∗φ̂S e
ikxσiν−

1
2 (32)

Solution (32) is identical to (21). There is no diffusive chimney when vertical velocity
w is used as prognostic variable.
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B Reverted bubble test

Aim of this section is to show that when Boussinesq approximation is applicable, reverted
bubble test should give the same results as direct test.

Dynamical equations describing irrotational adiabatic frictionless atmosphere com-
posed of perfect gas are usually written in the form:

dv

dt
= −

RT

p
∇p−∇φ (33)

dp

dt
= −κp∇ · v (34)

dT

dt
= −(κ − 1)T ∇ · v (35)

φ ≡ gz κ ≡
cp

cv

Standard notations are used: v is 3D velocity with components (u, v, w), p is pressure,
T is thermodynamical temperature, φ is geopotential, g is gravity acceleration, R is gas
constant of dry air, cp and cv are specific heats of dry air at constant pressure and at
constant volume.

Equations (33)–(35) can be rewritten into more suitable form using non-dimensional
Exner function Π and potential temperature θ:

dv

dt
= −cpθ∇Π−∇φ (36)

dΠ

dt
= −(κ − 1)Π∇ · v (37)

dθ

dt
= 0 (38)

Π ≡

(
p

p00

)κ

θ ≡ T

(
p00

p

)κ

κ ≡
R

cp
p00 ≡ 1000 hPa

Quantities Π and θ can be decomposed into background values and perturbations:

Π = Π0 +Π′ θ = θ0 + θ′ (39)

Background state is chosen resting, hydrostatically balanced and neutrally stratified
(isoentropic). This gives:

Π0(z) = Π0(0)−
gz

cpθ0
θ0 = const (40)

Inserting (39) and (40) into system (36)–(38) with restriction to xz plane leads to:

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= −cp(θ0 + θ′)

∂Π′

∂x
(41)

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
= −cp(θ0 + θ′)

∂Π′

∂z
+ g

θ′

θ0
(42)

∂Π′

∂t
+ u

∂Π′

∂x
+ w

∂Π′

∂z
=

gw

cpθ0
− (κ − 1)(Π0 +Π′)

(
∂u

∂x
+
∂w

∂z

)

(43)

∂θ′

∂t
+ u

∂θ′

∂x
+ w

∂θ′

∂z
= 0 (44)
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It should be mentioned here that equations (41)–(44) still describe the full 2D
system, i.e. no simplifications were used during their derivation. At this point Boussinesq
approximation can be introduced. It is based on two basic assumptions:

1. Perturbation θ′ is small compared to θ0 and can be neglected in equations (41),

(42) except from buoyant term g
θ′

θ0
.

2. Flow is close to incompressible. This requires two things: fluid velocity much
smaller than speed of sound and vertical scale of motion small compared to density
scale height.

Both these assumptions were fulfilled in bubble tests described in section 3, so the use of
Boussinesq approximation should be justified. When it is applied to system (41)–(44),
it becomes:

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= −cpθ0

∂Π′

∂x
(45)

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
= −cpθ0

∂Π′

∂z
+ g

θ′

θ0
(46)

∂u

∂x
+
∂w

∂z
= 0 (47)

∂θ′

∂t
+ u

∂θ′

∂x
+ w

∂θ′

∂z
= 0 (48)

System (45)–(48) has interesting symmetry, responsible for identical behaviour of
direct and reverted bubble test. It can be revealed using vertical mirroring operator Mz

defined as:
(Mzf)(x, z, t) ≡ f(x,H − z, t)

Function f must be defined for z ∈ [0, H]. It can be shown easily that operator Mz is
linear and has following properties:

Mz∂t = ∂tMz

Mz∂x = ∂xMz

Mz∂z = −∂zMz

Mz(f · g) = Mzf ·Mzg

Using these properties it can be verified immediately that system (45)–(48) is invariant
with respect to transformation:







u

w

Π′

θ′






7→







Mzu

−Mzw

MzΠ
′

−Mzθ
′







This means that when fields u,w,Π′, θ′ are solution of the system (45)–(48), their vertical
mirroring with change of sign for w and θ′ produces another solution.

Remark:

For experiments described in section 3 initial state was resting (u = 0, w = 0) and
vertically balanced. If it was horizontally balanced, initial perturbation Π′ would be
zero. Neverthless, Π′ was very small initially, so the only quantity which was actually
mirrored when preparing initial state for reverted test was perturbation θ′. This small
inconsistency might be the reason why there is a slight difference visible when comparing
figures 10 and 14. Another possible explanation is that this difference was caused by
non-Boussinesq effects allowed by model dynamics.

20



References
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