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Introduction

The development of data assimilation systems had improved the

numerical weather prediction models, increasing their accuracy. Thus,
the regular validation of these systems allows to verify their contribution
and avoids the deterioration of the numerical model forecasts.

It's in the frame of this principle that stay was dedicated to the

validation of the Slovenian data assimilation system.

This report summarizes the obtained results during this stay. In
fact, several verification tools were applied namely Variation Bias
Correction (VarBC) Monitoring, Degree of Freedom of a Signal (DFS),
Background and Observation error Tuning (TuneBR) and Moist Total

Energy Norm (MTEN).

A brief description of the applied tools is included in this report,
with reference to more detailed papers. The results of verification
experiments, which were very beneficial, will be detailed through this

report.



I. VarBC Monitoring

Satellite observations are an important component in data
assimilation systems. It can provide a huge amount of information
which covers a wide range of high levels and channels, however, it's not
obvious that it's always improving the analysis. Thus, the user is invited
to proceed to the necessary verifications in order to extract the most
useful information and avoid any perturbing signals.

The current paragraph deals with the verification and monitoring
of available satellite observations in Slovenia, namely NOAA-16, NOAA-
18, NOAA-19, METEOSAT_10, METOP-A and METOP-B. During this
verification, we could investigate the performance of AMSU-A, AMSU-B,
MSG-HR and MHS sensors for the available channels (from channel 2 to
channel 13).

1) Inventory of operational suite results:

A first experiment including the operational settings has been run
along a period of seven months (From 20" February to 7" of October).
The main results related to available signals are described in the
following paragraphs:

a) Increase in oma variability in May 2014:

Since the 6™ of May 2014, the oma values have known a higher
amplitude variability as shown in the figures 1.1 and 1.2. This
discontinuity has been noticed for AMSU-A (Satellites 209, 223, 004,
003) and AMSU-B (Satellites 209, 223, 003).
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Figure I.1: Variability of omg, oma and biascor
for operational experiment
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Figure I.2: Variability of omg, oma and biascor
for operational experiment

b) Increase in oma amplitude in September 2014:

The amplitude of oma has increased notably since September 2014
as described by figures 1.3 and 1.4. This issue has been noticed with the
sensors AMSU-A (Satellite 003) and AMSU-B (Satellites 223, 004, 003).
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Figure 1.3: Variability of omg, oma and biascor
for operational experiment
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Figure 1.4: Variability of omg, oma and biascor
for operational experiment
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c) NOAA-16 observation cessation:

According to figures 1.5 and 1.6, the NOAA-16 observations were no
more considered in the data assimilation system since May 8". This stop
was due to some technical problems related to the satellite sensor.
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d) New channels enabled:
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According to figures 1.7 and 1.8, the channel 13 of satellites 209,
223, 004 and 003 has been enabled for sensor AMSU-A since September
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Concerning the MSG HR sensor of satellite 073, the channels 4, 5
and 6 have been enabled also since September 2013 as described in
figures 1.9 and 1.10:
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2) Verification and tuning:

Through the following paragraph, we will describe the proceeded
investigation of the notable increase of oma amplitude since September
2014.

As a first step, an update of the blacklisted satellite observations
has been done, through it all the recently allowed channels had been

disabled. A new experiment of five weeks (from September 15 to October

7th) has been run including the new compiled binary.

As a first result, the new experiment oma amplitudes decreased in
comparison to the operational behavior, but a considerable oscillation
remained, as shown in the following figures:
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The next correction step was to tune the VarBC values. Thus, a
new experiment has been run including the new VarBC values for the
O9h and 21h networks.

In the following examples, we will focus on the behavior of the
AMSU-A sensor of the METOP-B satellite. During this step, the VarBC
values related to channel 5 to 12 were tuned.



The new values correspond to the 18h network were the oma
values followed a small amplitude oscillation around 0, which was

considered satisfying.

The following figures describe the
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According to the figure 1.14, the new oma behavior is satisfying,
although, the figure .15 shows higher oscillation amplitudes.

The investigation of the tuned channels showed an improvement in
channels 7 to 12, but a high increase of amplitudes for the channels 5
and 6. Thus, the VarBCs related to channels 5 and 6 were tuned back to
their operational values, however, the new VarBC values for channels 7

to 12 were maintained.



A new experiment including the updated VarBC values was run

described in the following figures:
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One more run over longer period has been done to verify the behavior of
oma after the last tunings:
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After the successful tuning of the AMSU-A sensor VarBCs, we
proceeded to the tuning of the AMSU-B sensor VarBCs by initializing
them to zero. This tuning concerned the METOP-A, METOP-B and

NOAA-19 satellites for the O0Oh, O3h and 12h networks. The new
values present a low oscillation amplitude around zero which

considered satisfying.

sat=223 sens=4 ch=5 N=03

a —— omg
aq f4=— oma
aq ] 1 J|He— biascor
o't | mag L
b [ .
w — a % . . |
I"u"l o 9
[ AVCIE |
1 |l|I 1 | .qq
= A s [ q I|
x aft 9949 dola I —
Py q o 21 no a9 9 i =
E o 8939 3 Y ada, |
= o . @
s 8 ag3dat qa%a ggq 39 o a ]
g a %a |E
£ Mgl |2
= 99944, L. "'.III q g
] “q a9 \/ =
z q 9 | b @
£ BRI a ¢
-3 af Ada | =
= \ =,
@ L =
| m
q
a
- |
qﬂ
\ . |
a i
Vo N
=) L ‘A
T o
a
T T
Sep Oct

date

Figure I.17: Variability of omg, oma and biascor

for new binary experiment

sat=223 sens=4 ch=3 N=12
—a— omg
;] R
2 \ —-=+— oma
q qa |—=— biascor
q |
/A
f a® |
= q
|
q
J |
q
w — ; |
1 q b
4q a" B |
qua a
a9 99999 ‘ a g
a |q’n':.”r“q
a
= Hag 9%
EFER q:EﬂGIq‘l :-1 0s9%% gaqq Raagq
aq Ll Q99 4 e q
a L] a%a .
ag 2, s ||
' ag I|
. q “
% AR
) | |
a \ |
qu q9a? "q o
as
(=]
! T T
Sep Ot
date
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The new behavior allowed to test turning the AMSU-B observation into
active mode for satellites 003, 004 and 223. This action were verified
through a new run over 4 days as described in the following figure:
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I1. Degree of Freedom of Signal

(DFS)

The DFS (Degree of Freedom of Signal) is a statistical method
which quantifies the weight attributed to an observation type by the
assimilation system. It measures the impact of an observation on
analysis.

The DFS can be quantified as the trace of the gradient of the
analysis in observation space with respect to the observations :

J (Hx*) } -y J (H;x*)

Jy° 0

DFS:Tr{
By!.

y{ €observations

In the linear case, the DFS can be quantified as:

DFS = Tr(KT HT ) = Tr(HK)
Where K is the Kalman gain matrix and H is the observation operator.

More theoretical aspects and properties of DFS can be found in Rodgers
(1996), Fisher (2003) or Cardinali et al. (2004).

The method consists on running a perturbed and an unperturbed
experiments. In order to apply the DFS method on the Slovenian data
assimilation system, we considered an experiment of 10 days (from
September 01 to 10™ 2014). The new experiment was modified in a way that
it takes into account the Mode-S (Strajnar 2012, JGR) observations.

Than, two domains were considered, first the LACE domain and
second a zoomed domain over Slovenia. This methods allows the
comparison of the observations weights according to the available types
over both domains.
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The absolute DFS of available observation types are described in the
following figures:
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Figure II.1: Absolute DFS for available observation types/parameters on full domain
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Figure II.2: Absolute DFS for available observation types/parameters on zoomed domain

The figures II.1 and II.2 show a dominant weight of aircraft data
over both domains, especially for the wind component.

A second result may be concluded from the Mode-S type, which is
available over Slovenia, thus it shows a significant impact on analysis in
the zoomed domain, and less impact for the LACE domain, where it can
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be dominated by the other observation types which are available over all
the LACE domain.

This conclusion can be also shown by the following figures which
describes the weight by observation type:
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Figure II.4: Absolute DFS for available observation types on zoomed domain
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The weight of different observation parameters can be described by
the following figures where the wind parameter show a dominant impact

over both domains:
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The following figures describe the time evolution of DFS according
to every observation type. It shows a dependency to the network time
which can be notable namely with the aircraft data (including Mode-S):
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Figure II.7: Absolute DFS time evolution for available observation parameters on full domain
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Figure II.8: Absolute DFS time evolution for available observation parameters on zoomed domain

In term of number of observations, the following figures show a
high frequency of aircraft and TEMP observations. However, in the
zoomed domain, the Mode-S observations are the most available
although a high network time dependency.
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for observation type on full domain
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The

following figures
accumulated number of observations for every considered type:
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[II. Moist Total Energy Norms

(MTEN)

The Moist Total Energy Norms (MTEN) method is based on the
comparison of the moist total energy norm-based cost functions. It evaluates the
forecasts sensitivity to observations.

The cost function of a subset of observations i can be described as:

Ji — <Xti _ Xtctr , Xti _ Xtctr>

where X, is the forecast initialized without the subset i and x is the full
observations assimilation forecast.

According to Ehrendorfer et al. (1999), this norm can be described as:

| | " : RT, L* ,\ &
<X — Xtctr ’ X — Xtctr> — ] f (“E 4 _UZ n E_PTE n 9?‘ pz n qz) _Prd??dﬂ
m Iy Py cplr ™ ) dm

P
where:

- u, Vv, T, pand q: The difference between control forecast and forecast
without i" subset of observation respectively for u and v components of
wind, temperature, surface pressure and specific humidity;

— Cp. Specific heat at constant pressure;

— R: Gas constant of dry air ;

— L: Latent heat condensation;

— T. Reference temperature;

— pr Reference pressure;

— n: Vertical coordinate.

Further detailed description of this method can be found in Storto A,
Randriamampianina R. (2010).

The MTEN method was applied over several observation types namely
TEMP, SYNOP, AMDAR, AMSU-A and SEVIRI observations.

The experiment covered the period from September 05" to 10™. It's to note that
the following results concern the level 80 to 87.
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The results showed a dependency to the network time, thus 4 networks
were taken into account; 00h, 06h, 12h and 18h as described in the following
figures:

Normalized variability of the cost function over different Forecast

ranges for 00H
1.4 5 O osh
£ 12h
12 o O 18h
E 24h
B 30h
c 107 m 36h
o W 42h
E 08 — B 4&h
= B S5dih
§ 06 —
=
0.4 —
02 - -
0.0 < —_—
o o o
= o % g o
L = ] w =
= > = = w
4] = =

Figure III.1: Normalized variability of the cost function over different forecast ranges for OOH

Mormalized variability of the cost function over different Forecast
ranges for 06H
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Figure III.2: Normalized variability of the cost function over different forecast ranges for 06H
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The results show a high impact of the TEMP observation for OOH
network, while an important impact of AMDAR observations was noticed
at O6H. This may be related to observation availability which vary
notably with time.

The results show also a limited influence of the Seviri observation
in comparison to conventional observations and mainly in comparison
to aircraft and AMSU-A observations.
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IV. TuneBR

This method involves the background and observation error

statistics which can be tuned a posteriori in order to adjust the
predefined errors.
In fact, the diagnosed errors indicate the real standard deviations of the
observation and background errors, and they can be compared with the
prescribed ones. The difference between the diagnosed and predefined
standard deviations leads to consider the following ratios:

I,=S04/s0, and r,=sb4/sb,
where:

soq: Diagnosed standard deviation of observation;
so,: Predefined standard deviation of observation;
sbq: Diagnosed standard deviation of background;
sb,: Predefined standard deviation of background.

The so, and so, predefined standard deviations should than be
multiplied by r, and 1, ratios respectively. These ratios concern the
following parameters:

q: specific humidity;

t: temperature;

bt: brightness temperature (just for observation ratio);

ke: kinetic energy (the squared average of u and v wind components).

The tuning of the predefined observation values is possible through
the mnamelist aldnml screen where it's possible to set the
SIGMAO_COEF.

The predefined background values can also be tuned through the
namelist aldnml_minim by setting REDNMC. It's also possible since the
cy36t1 to set the specific humidity standard deviation values separately
through the key REDNMC_Q. In such a case, two logical variables
should be set to true namely LREDNMCQ and LREDQERR.
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More detailed information about the calculation of r, and r, can be
found in Desroziers et al. (2005).

The TuneBR method was applied to the operational suite in Slovenia. As
a first result, the system had to be tuned within the following mean
observation and background ratios:

Table IV.1: Diagnosed observation and background ratios for operational suite
(February 20" to October 7%)

Variable Cases Ratio o Ratio b
q 284644 0.60149 1.09751
t 4363447 0.78626 1.32258
bt 9848072 1.02208
ke 4270991 0.79862 0.61264
Mean 8919082 0.91790 1.03630

These ratios were calculated over the period from February 20™ to
October 7™. For a cost reduction, we considered the period from
September 1° to September 25" to proceed to tunings. Thus, the new
calculated ratios are the following:

Table IV.2: Diagnosed observation and background ratios for operational suite
(September 1% to September 25'%)

Variable Cases Ratio o Ratio b
q 38363 0.69265 1.38649
{ 619896 0.73094 1.34506

bt 1340447 1.16326
ke 600949 0.74928 0.63674
Mean 1259208 0.98081 1.06899

The ratios ro and rb were then used to tune the observation and
background standard deviations as explained above, and the new values
were set as following:

— SIGMAO_COEF: 0.9==>0.8
— REDNMC_Q: 1.6 ==> 1.45
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A new experiment including the new SIGMAO_COEF and
REDNMC_Q values was run over the same period, the new calculated
ratios are summarized in the following table:

Table IV.3: Diagnosed observation and background ratios for experimental suite
(September 1%t to September 25)

Variable Cases Ratio o Ratio b
q 38405 0.67865 1.35098
t 538567 0.70961 1.25525

bt 1247940 1.11331
ke 533498 0.72514 0.60269
Mean 1110470 0.94726 1.00090

The new diagnosed values show a background ratio which is much
closer to 1. This indicates a satisfying improvement in the background
standard deviation values. However, more tunings need to be proceeded
for the observation standard deviations.
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Conclusions

This stay was very enriching experience, during which I could
learn and use new verification methods. The different applied tools
helped improving different components of the data assimilation system
in Slovenia.

The VarBC Monitoring tool results showed the necessity to revise
the enabled satellite channels. A first step was to blacklist some satellite
signals which were shown none beneficial. As a second step, we could
tune some VarBC values for the AMSU-A and AMSU-B sensors. This
tuning improved the analysis scores as was explained in details in the
section I, but further investigation can be done in order to understand
the increase of oma variability amplitudes since May 8" 2014.

The second applied tool, namely the Degree of Freedom of Signal,
helped understanding the weight of the available observations on
analysis over the LACE and Slovenian domains. The reading of both
domains results showed a noticeable impact of aircraft observation, and
especially the Mode-S observations.

Then, we tried to identify the different impact of observation types
on forecasts by applying the Moist Total Energy Norms method over
different network times. The aircraft observations showed a major weight
seconded by the AMSU-A observations. A less impact was demonstrated
for SEVIRI observations. A further work can be proceeded by
investigating the weight of Mode-S observations especially over Slovenia
domain.

The last verification tool, TuneBR, was applied to check the balance
between the background and observation standard deviations values,
and improve the predefined values by suggesting multiplication ratio. A
first iteration could help improving the quality of the background values,
but further work may be done in order to improve the observation
values.
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