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Results from the feature - based method: Method for Object-

Based Diagnostic Evaluation (MODE)

As discussed in the previous reports, the traditional metrics do not provide specific information
about the types of errors (displacement, location, shape) and because of the double-penalty issue,
to obtain the diagnostics in which a forecast was good or bad is difficult. Therefore, two categories
of spatial techniques using different ways of evaluating the model skill were applied: the filtering
(neighborhood verification) and feature-based methods.
The feature-based methods are used to investigate how well the forecast captures spatial patterns.
The method applied in this study is MODE (Method for Object-Based Diagnostic Evaluation).
Using the MODE approach described by Davis et al. (2006a, b) we evaluated the precipitation
forecasts.
Briefly, the following steps were taken into account:

• The objects (defined as spatial regions of interest) in both fields (forecast and observed) were
identified. This is based on a convolution and thresholding process, which involves choosing
the convolution radius (radius of influence) and the convolution threshold;

• The object attributes (which measure the spatial features of the objects) were computed.
MODE computes many attributes that can be classified into two categories. The first category
of attributes is for single objects without reference to any other object (for ex: object area). The
second type of attribute is for object pairs (for ex: centroid difference, angle difference, union
area, intersection area, symmetric difference). These attributes are important in evaluating the
ability of a forecast to predict the observed objects features;

• The fuzzy logic engine process, which is part of MODE, was applied to identify similarities
between forecast and observed objects. Using the fuzzy engine approach, the objects attributes
were merged (refers to associating objects in the same field) and matched (refers to associating
objects in different fields). The matched forecast and observed objects are referred to as pairs
and the merged objects are referred to as clusters;

• Summary statistics describing the objects attributes are produced and used to identify the
strength or the weakness of the forecast;

• Summarize the performance of the forecasts across many cases;

More information about the methods used by MODE to identify and verify objects can also be
found in Davis et al. (2009) and Brown et al. (2007).

Different combination of parameters can be applied, therefore selecting the optimal configuration
which will best capture the interest features is an iterative process. The main challenge is to define
the forecast and observed objects depending on the kind of forecast interest situation (Mittermaier,
2013). The way objects are identified is affected by the selection of two parameters: the convolution
radius (which determines the smoothing process) and the precipitation threshold.

Firstly, the forecast performance across scales was examined by investigating the performance
statistics as a function of convolution radius and threshold for AROME and INCA (not shown).
Therefore, different convolution radius and thresholds were applied to both forecast and observation
field. Low values of radius and threshold produce many objects and the number of objects decreases
when one of the parameter is increased. From these plots we selected the reasonable values of the
two main parameters (convolution radius and threshold).
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Model dataset

The numerical forecasts generated by AROME Nowcasting system are provided on a regular lat-
itude - longitude grid, with 2.5 km horizontal resolution and 90 vertical levels. The hourly cycling
3D-Var system assimilates radar data as well as other types of observations from OPLACE system
and local data base. The gridded precipitation analysis from INCA are assimilated through latent
heat nudging technique. For more details about the design and the implementation of the AROME
Nowcasting system at ZAMG, see [1].

INCA (Integrated Nowcasting through Comprehensive Analysis) is operationally run on a 3D
grid with 1 km horizontal resolution and vertical around 100 - 200 m. The nowcasting system in-
corporates synop observations, radar, satellite and high resolution topographic data. In this study,
two datasets of precipitation forecasts are used: one set provided by INCA based extrapolation sys-
tem (classical correlation-based motion vectors) reffered further as INCA-N - and another set from
INCA NWP based system (after 1-2 h forecast time, INCA-N is merged into AROME forecast),
reffered further as INCA-O.

Observation

INCA analysis dataset is used for verification. To be read it by MODE (can handle gridded
input data in GRIB1 or GRIB2 and netCDF classic format), INCA analysis files had to be converted
into the required format. First, the 15 minutes precipitation files are hourly cumulated. Second,
the files are converted from text-based data files into netCDF format by using NCL software. The
observations are interpolated into AROME grid through Cressman method.

Case study: 02nd of July 2016

With a low pressure feature over UK, a high pressure feature in western Rusia and a broad ridge
over Mediterranean Sea and south-western Europe, the second day of the warmest month in records
from 1881 to 2016 (NOAA’s climate report, 2017) was presenting an unusual reversed omega pattern
over Europe. During the day, an active cold front streched from Scandinavia to the Alps swept the
Central and Northern Europe bringing wet weather with showers, moderate rain, thunderstorms and
wind gusts. Figure 1 shows the ECMWF analyses for mean sea level pressure + temperature at 850
hPa fields (left) and geopotential + temperature at 500 hPa (right).

Figure 1: ECMWF, synoptic charts: MSLP + T at 850 hPa (left) and Z + T at 500 hPa (right)
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MODE was applied for three combination of convolution radius (R = 2, 4, 5 grid units) and
convolution thresholds (T ≥ =2.0, ≥ = 4.0, ≥ = 6.0). Multiple convolution radii and thresholds
were processed using the quilt entry, but only the results obtained for T ≥ =2.0 and R = 2 grid units
are presented.
Figures 2, 5 and 7 show the objects created by MODE from the hourly forecasts and observation fields
of AROME, INCA-O and INCA-N simulations initialized at 13 UTC, valid at 14 UTC, 17 UTC and
19 UTC. Note that the objects identied by MODE in the observation fields are approximately similar
for all simulations. It must be taken into account that depending on the forecast field, the comparison
between the observed and forecast fields may identify different ways to match clusters objects. Similar
colors between the fields indicate matched objects, royal blue color meaning unmatched objects.
Figures 3, 6 and 8 show the forecast objects with the outlines of the observation objects overlaid
of AROME, INCA-O and INCA-N simulations initialized at 13 UTC, valid at 14 UTC, 17 UTC
and 19 UTC. From the figures presented below, it can be noticed that the forecasted area of the
objects simulated by AROME is larger than the observed one. Regarding the INCA simulations,
there is a good match between the forecast and the observed areas, in the first hour. For INCA-N
simulations, starting with the second forecast hour, it is visible that matching the forecast objects
with observation outlines is more difficult.
Figure 4 shows an example of MODE simple and cluster attributes of AROME, INCA-O and INCA-
N simulations initialized at 13 UTC, valid at 14 UTC. The convex hull outlines for clusters (black
lines surrounding the objects), simple and cluster object numbers are also included. This kind of
information is obtained for all the simulations (not shown).

To quantify the similarity of the objects, the total interest value (TTI) is computed for each
object pair. The precipitation objects were matched if TTI ≥ 0.7.
To assess the forecast accuracy, several diagnostic MODE measures were evaluated. One of them is
the symmetric difference. This attribute can be a good indicator of forecast quality, since it measures
the area that’s inside at least one of the objects. If the value is small, it means that the two objects
nearly coincide. For the INCA simulations, the smallest symmetric differences were found in the first
two hours, while for AROME’s simulations the values were small at the forecast hours 3, 5 and 6.
The result may indicate a problem with the location of the storms.
Another attribute available through MODE is the frequency bias, computed as the area ratio of
identified forecast objects to identified observed objects. The same conclusion can be drawn with
regard to the symmetric difference attribute.
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Figure 2: MODE precipitation objects defined using a convolution threshold of 2.0 mm/h and a smoothing radius of 2 grid square for
AROME (left), INCA-O (middle), INCA-N (right) simulations initialized at 13 UTC and associated analysis field (bottom panel) for 02th

of July, valid at 14 UTC. Similar colors between the fields indicate matched objects

Figure 3: MODE forecast objects with the outlines of the observation objects overlaid defined using a convolution threshold of 2.0
mm/h and a smoothing radius of 2 grid square for AROME (left), INCA-O (middle), INCA-N (right) simulations initialized at 13 UTC
for 02th of July, valid at 14 UTC
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Figure 4: Example of MODE cluster object information defined using a convolution threshold of 2.0 mm/h and a smoothing radius of
2 grid square for AROME (left), INCA-O (middle), INCA-N (right) simulations initialized at 13 UTC for 02th of July, valid at 14 UTC
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Figure 5: MODE precipitation objects defined using a convolution threshold of 2.0 mm/h and a smoothing radius of 2 grid square for
AROME (left), INCA-O (middle), INCA-N (right) simulations initialized at 13 UTC and associated analysis field (bottom panel) for 02th

of July, valid at 17 UTC. Similar colors between the fields indicate matched objects

Figure 6: MODE forecast objects with the outlines of the observation objects overlaid defined using a convolution threshold of 2.0
mm/h and a smoothing radius of 2 grid square for AROME (left), INCA-O (middle), INCA-N (right) simulations initialized at 13 UTC
for 02th of July, valid at 17 UTC
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Figure 7: MODE precipitation objects defined using a convolution threshold of 2.0 mm/h and a smoothing radius of 2 grid square for
AROME (left), INCA-O (middle), INCA-N (right) simulations initialized at 13 UTC and associated analysis field (bottom panel) for 02th

of July, valid at 19 UTC. Similar colors between the fields indicate matched objects

Figure 8: MODE forecast objects with the outlines of the observation objects overlaid defined using a convolution threshold of 2.0
mm/h and a smoothing radius of 2 grid square for AROME (left), INCA-O (middle), INCA-N (right) simulations initialized at 13 UTC
for 02th of July, valid at 19 UTC

8



Using the MODE-Analysis tool, the results obtained by MODE were summarized and aggre-
gated. Figures 9 and 10 show the total number of simple objects (regardless if they are matched
or unmatched) identified by MODE, summed by forecast lead time for each temporal aggregation,
using a smoothing radius of 2 grid square and convolution threshold of 2.0 mm/h and 6.0 mm/h.

Figure 9: Total object counts by lead time for AROME (blue), INCA-O (orange), INCA-N (grey) forecasts and analysis objects - OBS
(yellow) fields aggregated across summer using a threshold of 2.0 mm/h and a smoothing radius of 2 grid square

Figure 10: Total object counts by lead time for AROME (blue), INCA-O (orange), INCA-N (grey) forecasts and analysis objects -
OBS (yellow) fields aggregated across summer using a threshold of 6.0 mm/h and a smoothing radius of 2 grid square

Regardless of lead time, the number of the precipitation objects identified by MODE in the
AROME forecast field is substantially higher than the number of the observed objects. For all the
convolution radius and thresholds, the total object counts for the summer aggregation is larger for
AROME than for the INCA systems (not shown).
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Summary

The feature-based method, MODE (which is part of the Model Evaluation Tool), described by
Davis et al (2006a, b) was used in this study. MODE provides diagnostic information (about the
nature of forecast errors) that is meaningful for the high-resolution NWP applications. It was applied
for the evaluation of the hourly precipitation forecasts provided by AROME, INCA-N and INCA-O
for July 2016 and January 2017. Taking into account the fact that our synoptic interest features
are related to mesoscale precipitation systems, only the results from July 2016 are presented, as
well as a case study from 02nd of July. Different combination of parameters (convolution radius and
convolution thresholds) were applied to both forecast and observation fields for all datasets. As it
was mentioned before, selecting the optimal configuration (all the configurations were post-processed
to a 2.5 km common grid) is an iterative process. The statistics of objects attributes from MODE
were examined to identify the correlations and the differences between the identified objects.
In general (the results obtained by the aggregation of the MODE output) AROME Nowcasting sim-
ulates more objects than INCA systems with respect to observed objects. Regardless if the objects
are matched, clusterized or unmatched, for all the convolution radius and convolution thresholds
tested, AROME overpredicted the precipitation systems.

Selected results for the 02nd of July 2016 were presented. It was noticed that the forecast area of
the objects simulated by AROME was larger than the observed one. For the first lead time, INCA
simulations showed a good match between the forecast and observed areas. Starting with the second
forecast lead time, INCA-N simulations showed that matching the forecast objects with observation
outlines is more difficult. To assess the forecast accuracy, the symmetric difference was evaluated (if
the value is small it means that the objects nearly coincide). For INCA-O, the smallest symmetric
differences were found for the first two forecast hours. The increase of the attribute values with
lead time is noticed. For AROME’s simulations the small values were registrated for the forecast
lead time 3, 5 and 6. These results may indicate a problem of the model with the location of any
individual mesoscale system.

Sensitivity to initial state

Case: 02nd of July 2016

The aim of the experiments was to understand the spin up oscillations in AROME Nowcasting
system occured in the first hour of simulations. AROME Nowcasting was hourly run for this case
with a 3DVAR radar assimilation and latent heat nudging.

ECHKEVO tool was used to compute the time evolution of the pressure and temperature fields
in 4 points of the domain which are specified in detail in Table 1, at the lowest model level. Figure
11 shows the AROME domain (576 x 900 grid points, L90, ∆x = 1.2 km ).

Experiment names:

• EXP1 - AROME “open loop”

• EXP2 - AROME cycled (+ filtering)

• EXP3 - AROME + IAU cycling configuration
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Figures 12 and 13 show the pressure evolution while Figures 14 and 15 show the temperature
evolution at the lowest model level, for the all 4 points, tstep = 150 sec period.

Note the spurious oscillations seen not only for the points which are situated in the mountain
area. Although these oscillations are more pronounced in the mountain grid points, they are also
present for point 1 (Vienna). The experiment EXP3 is not able to diminish the noise from the
analysis.
Regarding the results showing the temperature evolution, they are much less noisy, for all the exper-
iments.

Figure 11: AROME domain: 576 x 900 grid points, L90, ∆x = 1.2 km. The grid points marked by black dots are used by ECHKEVO
tool to produce the output

Summary

The results showing the pressure evolution need further investigation. The oscillations are present
for all the experiments, for all 4 points (although there are not so pronounced for point nb.1, Vienna).
For this case, the experiment EXP3 registered the highest amplitudes comparing with the other two
experiments. The question why EXP3 produces large amplitudes gravity waves needs to be explored.

The results showing the temperature evolution are less noisy. Yet, in the first 20 sec, some small
oscillations are present for EXP1 and EXP2. The experiment EXP3 has a different behaviour which
is kept for all 4 points. The temperature field is much better in balance after the IAU cycling con-
figuration is applied.
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Figure 12: Time evolution of the pressure for Vienna and Innsbruck
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Figure 13: Time evolution of the pressure for Klagenfurt and Salzburg
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Figure 14: Time evolution of the temperature for Vienna and Innsbruck
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Figure 15: Time evolution of the temperature for Klagenfurt and Salzburg
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