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1. Introduction

The  satellite  radiance  observations  are  important  elements  of  any  data  assimilation  systems,
however, its systematic errors (i.e. biases) should be removed in order to not degrade the quality of
analysis and of the related forecast. The variational bias correction (VARBC) aims to correct these
observation biases in an adaptive manner and it is nested in the variational data assimilation. The
VARBC approach was shown to be very efficient compared to other bias correction methods (e.g.
static or offline) and is able to follow changes of the quality of satellite sensors and to distinguish
between observation and NWP model biases (Auligne et al, 2007). On the other hand, it was studied
more comprehensively in global data assimilation frameworks and due to different conditions of
limited-area systems (data sample, asynoptic analyses, etc) the VARBC settings should be carefully
revised.  Even because of inappropriate settings the better  performance of VARBC compared to
more basic bias correction methods might not be necessarily true.
At the beginning of the LACE stay general questions have been raised regarding VARBC operation
what we wanted to answer:

• Which  VARBC  initialization  approach  provides  more  accurate  bias  information  about
currently used satellite sensors on a certain period (coldstart, warmstart, global, else)?

• How  should  the  adaptivity  parameter  be  set  in  passive  and  in  active  assimilation
configurations for its proper use?

However, during the first half of the LACE stay, few other questions were emerged too which we
would be interested to answer as well:

• What is the critical size of VARBC data sample which can provide reasonable estimation of
the linear regression method in LAM?

• Which predictor(s) is(are) the most important one(s) in VARBC for each sensors and for
each channels and how can the collinearity of the predictors be avoided?

• Can  the  VARBC  be  efficient  for  a  LAM  data  assimilation  system  correcting  only
observation bias without the use of anchor and/or dense high quality observations?

• Can the Harris and Kelly method be implemented effectively in an operational LAM data
assimilation system?

• Can  we  use  different  or  mixed  VARBC  cycling  strategy  for  different  sensors  and/or
channels?

In this report a set of experiments will be described which has been prepared to study VARBC
behavior and to answer some of the above mentioned questions. 

2. Experimental setup

During the experiments the configurations of the ALARO/CHMI operational NWP model has been
used which has 4.7km horizontal resolution and uses 87 vertical levels up to 0.1 hPa. Its DA system
includes an OI surface assimilation and a BlendVAR upper-air assimilation schemes (Bucanek et al,
2015). The operational assimilation system perform analyses 6 hourly i.e. 4 analyses in a day at 00,
06, 12 and 18UTC. Taking into account proper large-scale information,  DF Blending technique
(Brozkova et al, 2003) utilizes ARPEGE global analyses at each network times. The domain of the
ALARO/CHMI can be seen on figure 1.



Figure 1. The orography of ALARO/CHMI model domain

For the investigation of VARBC, several passive assimilation experiments have been carried out
with  only  the  3DVAR  of  the  ALARO/CHMI  system.  The  table  1.  summarizes  the  different
experiments and its configurations running on the period of 1st of September and 20th of October,
2015. The passive assimilation was started from 09UTC (and 06UTC) to get  larger  amount of
observations  from METOP (and  NOAA satellites  respectively)  using  24h  VARBC cycling.  At
09UTC analysis  time,  the  first-guess  is  used  from the  previous  3  hour  forecast.  The  VARBC
predictor selection in ALADIN is set consistently with the global model.

Name X94 X95 X96 X97 X98

VARBC
initialization

Coldstart Warmstart Cold+Warm Harris and Kelly Global

Observations at
09UTC

AMSU-A, MHS,
HIRS, IASI
(METOP-A,
METOP-B),

SEVIRI
Meteosat10

AMSU-A, MHS,
HIRS, IASI
(METOP-A,
METOP-B),

SEVIRI
Meteosat10

AMSU-A, MHS,
HIRS, IASI
(METOP-A:

COLD, METOP-
B: WARM),

SEVIRI
Meteosat10:

WARM

AMSU-A, MHS,
HIRS, IASI
(METOP-A,
METOP-B),

SEVIRI
Meteosat10

AMSU-A, MHS,
HIRS, IASI
(METOP-A,
METOP-B)

Observations at
06UTC

AMSU-A, MHS,
HIRS, IASI
(NOAA-18,
NOAA-19),

SEVIRI
Meteosat10

AMSU-A, MHS,
HIRS, IASI
(NOAA-18,
NOAA-19),

SEVIRI
Meteosat10

AMSU-A, MHS,
HIRS, IASI
(NOAA-18,
NOAA-19),

SEVIRI
Meteosat10

AMSU-A, MHS,
HIRS, IASI
(NOAA-18,
NOAA-19)

NBG Default Default Default - Default

Table 1. The list of experiments

In  order  to  diagnose  the  efficiency and  functionality  of  VARBC,  the  visualization  of  VARBC
statistics have been executed for the evolution of bias parameters of various predictors, for the
observation minus first-guess (OMG) biases (corrected and non-corrected) and for OMG standard
deviations. Also the relevance of bias predictors were plotted where the predictors are normalized
and therefore their importance in bias correction can be comparable (Auligne, 2007). The list of
predictors  can  be  seen  on  Table  2.  The  diagnostic  and  visualization  tools  are  developed  and
provided by Patrik Benacek. In the following we will try to answer the above mentioned questions
focusing only METOP-A satellite and its sensors. For the interest of NOAA satellites the analyses
valid at 06UTC will be shortly discussed as well. In Appendix A and Appendix B the results of
METOP-B and METEOSAT-10 satellites can be also seen respectively. In Appendix C short notes
on the use of IASI sensor will be provided.



Predictor number Predictor

0 constant

1 1000-300hPa thickness

2 200-50hPa thickness

3 skin temperature

4 total column water

5 10-1hPa thickness

6 50-5hPa thickness

8 nadir viewing angle

9 nadir view angle **2

10 nadir view angle **3

11 nadir view angle **4

15 land or sea ice mask

16 view angle (land)

17 view angle (land) **2

18 view angle (land) **3

Table 2. The list of available predictors in VARBC

2.1. The references of the experiments

During the comparative study, two experiments as references were selected which provide good
estimation  of  observation  biases  and  draw “control”  values  to  assess  performance  of  VARBC
initialization  methods.  The  first  one  (x98)  is  the  use  of  global  VARBC  coefficients  in  each
consecutive analysis step from ARPEGE global model and the second one (x97) is the approach
proposed by Harris and Kelly, 2000. In addition, this HK approach is based on observation-minus-
analysis departures to provide regression coefficients that are less affected by a first-guess error. In
case that the satellite bias does not change in time, both approaches should provide reasonably good
information about observation bias what LAM VARBC should follow or should converge to during
the 50 days of the initialization period. 

2.2. METOP-A AMSU-A 

2.2.1. The importance of predictors

The figure 1. shows the importance of predictors in the bias correction for each AMSU-A channels
which were used during the x94 and x95 experiments. In figure 2. the same diagram for the two
references is plotted as well. It can be seen that some of the predictors are contributing in bias
correction with larger amount than others. Also it is important to observe that the coldstart and the
warmstart determine differently these contributions i.e. the relevance of predictors. Furthermore one
can see also that in case of coldstart initialization for the AMSU-A sensor the strong collinearity of
predictor 0 and predictor 2 is apparent and it is not presented in case of warmstart. The collinearity
of predictors could be explained by a less observation sample providing unreasonable ranges of
predictors.  Due to the results of figure 1. we will  focus on “the most important” predictors for
different AMSU-A channels to study the functionality of the VARBC.



Coldstart Warmstart
Figure 1. The importance of VARBC predictors for cold and warmstart initialization using METOP-A satellite, AMSU-

A sensor (computed on the period of 01/09/2015-20/10/2015).

Global Harris and Kelly

Figure 2. The importance of VARBC predictors for global and HK initialization using METOP-A satellite, AMSU-A
sensor (computed on the period of 01/09/2015-20/10/2015).

2.2.2. Evaluation of VARBC diagnostics

In figure 3. the diagnostic results of AMSU-A channel 5 can be seen with the evolution of predictor
0 and predictor 9 comparing the different experiments. From the OMG statistics it is visible that
certain bias exists and we can observe the specialties of the different VARBC initialization methods
as well. Regarding the evolution of predictors, the warmstart starts from global information and
tries to converge slowly towards the Harris and Kelly (HK or x97). The coldstart starts from zero
and after 50 days, it is still far from references i.e. it would require even longer period with the
current configuration to get reasonably good bias information with this approach.

In figure 4.  the results  of  AMSU-A channel  7  are  visualized with predictor  0 and predictor  8.
Regarding the OMG statistics one can observe similar behavior than with channel 5 except the STD
of OMG in case of coldstart is slightly larger compared to other runs. As relatively larger bias exists
for this AMSU-A channel, coldstart is also not able to reach HK and global bias information during
the test period. Note that even if the coldstart provide reasonable bias correction at the end of the
period, the quality of bias correction is deteriorated probably due to underestimated limb-correction



coefficients (for the predictors 8 to 10). The slow convergence and higher STD of the coldstart is
not a good signal and require further investigations. 

pred0

pred9

Figure 3. AMSU-A channel 5 OMG bias (corrected and non-corrected), OMG standard deviation on the left and the
evolution of predictor 0 and predictor 9 on the right.

In figure 5. the statistics of AMSU-A channel 13 are plotted highlighting predictor 0 and 10 which
were found to be the most important ones. Channel 13 is a higher peaking channel and one can see
different behavior concerning the evolution of predictors than above mentioned channels. For this
channel (and for ch11, ch12 as well which are not shown) the predictors have too adaptive evolution
and the two different approaches (namely cold and warmstart) behave very similarly in term of
OMG statistics as well (of course after a short spin-up period of coldstart).  This stronger adaptivity
could be explained mainly by a combination of a larger observation sample and a higher FG error in
stratosphere.  Supposing  that  the  observation  number  determines  the  adaptivity  of  VARBC
coefficients  (IFS  Documentation,  part  II),  the  higher-peaking  channels,  which  have  two  times
higher observation sample than the low-peaking channels, have also a larger response to the FG
error.



pred0

pred8

Figure 4. AMSU-A channel 7 OMG bias (corrected and non-corrected), OMG standard deviation on the left and the
evolution of predictor 0 and predictor 8 on the right.

pred0

pred10

Figure 5. AMSU-A channel 13 OMG bias (corrected and non-corrected), OMG standard deviation on the left and the
evolution of predictor 0 and predictor 10 on the right.



2.3. METOP-A MHS 

2.3.1. The importance of predictors

Similarly for MHS sensor the figure 6. shows the importance of predictors in the bias correction for
cold and warmstart (and figure 7. shows references). It can be seen again that the coldstart and the
warmstart determine differently the relevance of predictors. Also it is visible that in case of coldstart
VARBC initialization  the  predictor  0  and  predictor  2  have  clear  collinearity  which  is  not  that
obvious with warmstart. After the results of figure 5. we will pick up only two predictors for two
MHS channels to verify the functionality of the VARBC. Supposing that the observation sample of
MHS instrument is (in passive assimilation mode) around 7000, both the coldstart and warmstart
VARBC approaches response strongly on a higher FG error.

Coldstart Warmstart
Figure 6. The importance of VARBC predictors for cold and warmstart initialization using METOP-A satellite, MHS

sensor.

Global Harris and Kelly

Figure 7. The importance of VARBC predictors for global and HK initialization using METOP-A satellite, MHS sensor.

2.3.2. Evaluation of VARBC diagnostics

In figure 8. and in figure 9. the MHS channel numbers 4 and 5 are shown respectively and their
VARBC diagnostics. The OMG STD of the different experiments are matching around the value of
1.3. The corrected OMG biases of the cold and warmstart behave similarly as it was pointed out for
AMSU-A channel  13  as  well.  Furthermore  in  the  evolution  of  the  different  predictors  larger
adaptivity can be identified and the warmstart (together with the cold) is usually not able to follow
the references and difficult to see any convergence during the 50 days period.



pred0

pred2

Figure 8. MHS channel 4 OMG bias (corrected and non-corrected), OMG standard deviation on the left and the
evolution of predictor 0 and predictor 2 on the right.

pred0

pred2

Figure 9. MHS channel 5 OMG bias (corrected and non-corrected), OMG standard deviation on the left and the
evolution of predictor 0 and predictor 2 on the right.



2.4. METOP-A IASI

2.4.1. The importance of predictors

Due the large number of IASI channels, only selected ones were considered and will be shown for
this investigation. One CO2 channel (ch242) was taken which is sensitive around the tropopause
and another which is a humidity sensitive channel (ch3653) of the IASI sensor. Here in figure 10.
and in  figure  11.  the  importance  of  predictors  are  presented  for  more  (selected)  channels.  For
channel  242  the  predictor  1,  predictor  6  and  for  channel  3653  the  predictor  0  and  6  can  be
considered for cold and warmstart. 

Coldstart Warmstart

Figure 10. The importance of VARBC predictors for cold and warmstart initialization using METOP-A satellite, IASI
sensor (computed on the period of 01/09/2015-20/10/2015).

Global Harris and Kelly

Figure 11. The importance of VARBC predictors for global and HK initialization using METOP-A satellite, IASI sensor
(computed on the period of 01/09/2015-20/10/2015).



2.4.2. Evaluation of VARBC diagnostics

The IASI channel 242 (in figure 12.) has in general smaller bias which can be seen from OMG stats
and from the bias parameters. Due to this the coldstart (together with warmstart) is able to give
reasonable bias correction during the 50 days. The evolution of the predictor 0 is comparable for the
two initialization approaches and it is a general comment that coldstart (in LAM context and with
default  settings) is  able  to  give appropriate  bias correction in case of smaller observation bias.
Another example for this is the METOP-A AMSU-A channel 6 which is not shown here.

In figure 13. the stats of IASI humidity channel (ch3653) are visualized. For this channel larger
observation bias can be detected and regarding the evolution of the selected predictors, one can see
that warmstart and coldstart behave differently and  furthermore warmstart hardly moves towards
the  reference  HK  solution  in  case  of  pred  6.  The  HK coefficients  for  predictor  5  and  6  are
overestimated for this method (see Figure 11.) This might be due to inadequate range of predictors 5
and 6 within the linear regression model. At the same time, the adaptivity of the bias parameters (for
both methods) looks correct with the defaults VARBC settings.

pred1

pred6
Figure 12. IASI channel 242 OMG bias (corrected and non-corrected), OMG standard deviation on the left and the

evolution of predictor 1 and predictor 6 on the right.



pred0

pred6

Figure 13. IASI channel 3653 OMG bias (corrected and non-corrected), OMG standard deviation on the left and the
evolution of predictor 0 and predictor 6 on the right.

2.5. NOAA-18

Similarly to 09UTC experiments, passive assimilation experiments for 06UTC network time (in
daily VARBC cycling) have been prepared to study radiance observations from NOAA satellites as
well. In this section only NOAA-18 AMSU-A sensor will be highlighted. Due to the quality of this
sensor  has  been changed during the selected  period and it  is  interesting  to  verify the different
VARBC initializations and its performances. 

For a selected AMSU-A channel (number 7.) the most important predictors are the predictor 0 and
predictor 9 for both the cold and the warmstart (not shown). In the figure 14. the non-corrected
OMG statistics show clear signal of this change in the quality of AMSU-A sensor for this channel.
Probably this is the reason for higher bias and higher standard deviation at the beginning of the
examined period in case of coldstart initialization. In the time evolution of predictor 0 this change is
also visible in the shift of global coefficients. Cold and warmstart are trying to follow this drift. It is
important to note that Harris and Kelly approach in such case is not able to follow the change in
sensor quality without the recomputation of “static” bias information. Therefore the advantage of
adaptive VARBC correction is crucial in this kind of situation.



pred0

pred9

Figure 14. AMSU-A channel 7 OMG bias (corrected and non-corrected), OMG standard deviation on the left and the
evolution of predictor 0 and predictor 6 on the right.

3. Conclusions and Summary

Two VARBC initialization methods in comparison with two different references were taken into
account in order to determine their functionality using its default settings. During the study the
following conclusions can be drawn.

• Regarding the importance of VARBC predictors, the issue of collinearity should be avoided.
(More details about the collinearity can be read in Auligne, 2007)

• The preliminary conclusions about the coldstart initialization method:
◦ It is not able to produce, spin-up bias information in case of small observation sample,

especially for AMSU-A channel 5 to 7.
◦ Some of the bias coefficients are not reasonable with respect to global coefficients (e.g.

underestimation of limb-correction predictors channel 8 to 10).
◦ The observed STD of the corrected OMG departures is sometimes larger than with the

other approaches.
• Warmstart initialization (x95) for AMSU-A lower peaking channels provides plausible bias

correction with the default settings.
• Warmstart  approach (x95)  together  with coldstart  for AMSU-A higher  peaking channels

shows too adaptive evolution of bias parameters. The fluctuation of VARBC coefficients in
time could be explained by a combination of a larger observation sample and a higher FG
error.  Supposing  that  the  observation  number  determines  the  adaptivity  of  VARBC
coefficients  (IFS  Documentation,  part  II),  the  instrument  channels  providing  a  higher
observation sample tend to adapt the bias coefficients to OmG strongly. Moreover, if there is
a higher FG error, which is characteristics for stratosphere (temperature sensitive channels)
or  humidity-sensitive  channels,  the  bias  coefficients  are  more  affected  by the  FG error



changes. 

• For sensor MHS, both coldstart and warmstart behave similarly and provide too adaptive
VARBC bias parameters.

At  the  introduction  few  questions  have  been  raised  and  after  the  first  results  the  following
conclusions can be collected:

• Which  VARBC  initialization  approach  provides  more  accurate  bias  information  about
currently used satellite sensors on a certain period (coldstart, warmstart, global, else)?
◦ The  speed  of  convergence  depends  on  the  instrument  observation  sample  in  each

analysis. Less observation sample means slower convergence in VARBC coefficients.
The coldstart is able to correct the satellite bias for the  MHS, IASI instruments (as well
as  the  AMSU-A high-peaking  channels)  providing  that  there  is  a  large  observation
sample (see Fig.5, 8, 9, 13). However, the quality of the coldstart bias coefficients is
affected by the FG error that could be significant for the stratospheric and humidity
channels. The benefit of the warmstart method is twofold: i) the shorter spin-up period
for the channels with less observation sample (e.g. AMSU-A low-peaking channels) ii)
more reasonable bias coefficients. The use of global VARBC coefficients directly in
LAM requires more investigations.

• How  should  the  adaptivity  parameter  be  set  in  passive  and  in  active  assimilation
configurations?
◦ (not studied yet)

• What is the critical size of VARBC data sample which can provide reasonable estimation of
the linear regression method in LAM?
◦ From the first results this question cannot be answered. However the size of the data

sample is the most critical issue about the success of VARBC. As a next step Harris and
Kelly method will be calculated with different sample size in order to determine this
limit  experimentally.  Furthermore  the  adaptivity  issue  of  higher  peaking  channels
requires also more study due to more observations should be used from these channels.

• Which predictor(s) is(are) the most important one(s) in VARBC for each sensors and for
each channels and how can the collinearity of the predictors be avoided?
◦ For the importance of predictors, diagnostic tool was used. During the first results it was

found that with the use of warmstart the collinearity of the predictors can be avoided
and there is no need to switch off one of them as it should be done in case of coldstart. 

• Can  the  VARBC  be  efficient  for  a  LAM  data  assimilation  system  correcting  only
observation bias without the use of anchor and/or dense high quality observations?
◦ (not studied yet)

• Can the Harris and Kelly method be implemented effectively in an operational LAM data
assimilation system?
◦ (not studied yet)

• Can  we  use  different  or  mixed  VARBC  cycling  strategy  for  different  sensors  and/or
channels?
◦ (not studied yet)
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