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1 Assimilation of aircraft Mode-S observations in ALADIN/CHMI
Modern air traffic surveillance systems have received substantial attention in recent years due to its
capability to provide not only an accurate knowledge of the position of the aircraft, but also meteo-
rological information (de Haan, 2011; Strajnar, 2012). The secondary radars operating in the S mode
(Mode-S) communicating with an active transponder-equipped aircraft can determine the mandatory
Mode-S Enhanced Surveillance (EHS) parameters and optional parameters from the special Mode-S
Meteorological Routine Air Report (MRAR) register. Mode-S EHS data contain indirect meteorolog-
ical information, while Mode-S MRAR data provides direct observation of both air temperature and
wind.

This study aims to explore a potential of new Mode-S aircraft observations to improve the short-
range numerical weather forecast. The state-of-the-art NWP system ALADIN/CHMI and aircraft
observations used in this study are briefly described. The quality of Mode-S data available in the
airspace of the Czech Republic is evaluated. Finally, first results of assimilation studies evaluating an
impact of the Mode-S MRAR observations are discussed.

1.1 NWP system ALADIN/CHMI

A general meso-scale forecasting tool ALADIN has been developed in an international collaboration
since 1991, taking the ARPEGE/IFS global model as a backbone. ALADIN version used in this
study is based on the operational setting at Czech Hydrometeorological Institute (ALADIN/CHMI),
covering computational domain of Central Europe, with horizontal mesh size of 4.7 km, 87 vertical
levels and time-step of 180 s.

ALADIN/CHMI couples hydrostatic dynamics and the set of ALARO-1 physical parametrizations
suited for modeling atmospheric motions from planetary up to the meso-gamma scales. Surface pro-
cesses are parametrized by the land surface scheme Interaction Soil Biosphere Atmosphere (ISBA)
(Noilhan and Planton, 1989; Giard and Bazile, 2000). The soil moisture, together with snow depth,
vegetation and other parameters, is very important component of the surface water and energy bud-
gets. Following Giard and Bazile (2000), the assimilation of screen-level observations using optimal
interpolation (OI) is used to provide an analysis of the soil prognostic variables. The upper-air initial
conditions are provided by the BlendVar scheme which combines Digital Filter (DF) Blending method
(Brožková et al., 2001) with the 3D-Var method. The variational code of the ALADIN 3D-Var is
based on the incremental formulation originally introduced in the ARPEGE/IFS global assimilation
(Courtier et al., 1994). The control vector is composed of vorticity, divergence, temperature, specific
humidity and surface pressure. Prognostic water species and other convection and turbulence related
variables are used from the background. The specification of the background error covariance matrix
follows Berre (2000).

The BlendVar scheme uses a six-hour forward intermittent cycle, see Figure 1. A six-hour forecast
from a previous cycle is used as the first guess or background. First the surface analysis updates
the soil prognostic variables (temperature and water content) by optimal interpolation of screen-level
observations, while sea temperatures are taken from the global ARPEGE analysis. Then upper-air
prognostic variables are blended with the global ARPEGE analysis using the DF Blending scheme.
Afterwards the 3D-Var assimilation combines the blended background and available observations by
minimizing the cost function:

J(x) = 1
2(x− xb)T B−1(x− xb) + 1

2(y −H(x))T R−1(y −H(x)), (1)

where x is an analyzed model state vector, xb is the blended background, y is a vector of observations,
H is generally a non-linear observation operator, R is an observation error covariance matrix and B
is a background error covariance matrix. The analysis is used as initial condition for the subsequent
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six-hour forecast to create the first guess of the next assimilation cycle. The assimilation system is
applied with 6-hour cycling at 00, 06, 12 and 18 UTC. The BlendVar assimilates most of conventional
observations and satellite radiances from Spinning Enhanced Visible and Infrared Imager (SEVIRI)
on board of geostationary satellite Meteosat-10. The assimilated conventional observations comprise
air pressure from surface synoptic stations (SYNOP), temperature, humidity and wind measurements
from aerological soundings (TEMP), temperature and wind observation from aircraft (AMDAR) and
atmospheric motion vectors (AMV) derived from Meteosat-10. Only aircraft data are analyzed within
a 3-hour assimilation window, all other observations are assimilated only at analysis time.

Figure 1: The BlendVar assimilation scheme.

1.2 Aircraft observations

Aircraft-based observations are one of the key components of the Global Observing System and the
World Weather Watch Programme of the World Meteorological Orgnisation (WMO). The automated
collection and transmition of meteorological observations from aircraft is well established and provides
support to the upper-air monitoring of the atmosphere and meteorological applications. The main
source of aircraft-based observation is derived from the Aircraft Meteorological DAta Relay (AMDAR)
system (Painting, 2003). Novel approaches using enhanced surveillance air traffic control radar have
been exploited only recently. They are considered very interesting and potentially very helpful for
regional modeling and nowcasting applications.

1.2.1 AMDAR

AMDAR system facilitates the fully automated collection and transmission of weather observations
from commercial aircraft. The system is operated by WMO Member National Meteorological and
Hydrological Service in cooperation with partner airlines. The AMDAR program is currently served
by a worldwide fleet of over 3000 aircraft contributing more than 400000 high quality upper air
observations per day (WMO, 2014a). Studies and experiments have shown that AMDAR and other
aircraft-based observations generally provide an improvement in forecasting ability through a reduction
in NWP forecast error of up to 20% (WMO, 2014b).

AMDAR collects and distributes meteorological variables (air temperature, wind speed and direc-
tion), accurate measurements of time and position (latitude, longitude and pressure altitude), mea-
surements of turbulence and water vapor or humidity data, if the aircraft is appropriately equipped.
A typical reporting frequency while aircraft is on ascent/descent is in lower troposphere by 10 hPa
intervals (or 6/60 second intervals), in the middle to the upper troposphere by 50 hPa intervals (or
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20/60 second intervals), while reporting en route is in 3 to 7-minute intervals. The uncertainty of
AMDAR measurements is estimated around 0.4◦C for temperature and and 2–3 m/s for wind, more
details can be found in Painting (2003).

1.2.2 Mode-S

The secondary radars operating in the S mode (Mode-S) can determine the mandatory Mode-S En-
hanced Surveillance (EHS) parameters and optional parameters from the special Mode-S Meteorologi-
cal Routine Air Report (MRAR) register. Mode-S EHS data contain indirect meteorological informa-
tion (de Haan, 2011), while Mode-S MRAR data provides direct observation of both air temperature
and wind (Strajnar, 2012).

This section presents an overview of Mode-S data provided by Air Navigation Services of the Czech
Republic (ANS CR) in the scope of the project. In the Czech Republic, there are three Mode-S radars
located at Prague and on the Pisek and Buchtuv kopec hills. We also receive data from Germany,
Slovakia and the most recently from Austria, see Table 1. The research Mode-S data sample contains
parameters specified in Table 2.

Name Latitude [deg] Longitude [deg] Range [km] Mode-S data
PRAHA 50.086 N 14.270 E 296 MRAR,EHS
BUKOP 49.660 N 16.133 E 370 MRAR,EHS
PISEK 49.786 N 14.035 E 296 EHS
JAVOR 48.261 N 17.163 E 296 EHS
AUERSBG 50.456 N 12.648 E 278 EHS
VIENNA 48.102 N 16.578 E 222 EHS

Table 1: Overview of available radars.

Source Parameter Unit
EHS ICAO address
EHS lat/lon [deg]
EHS flight level [100 feet]
EHS ground speed [m/s]
EHS true air speed [m/s]
EHS Mach number [1]
EHS heading angle [deg]
EHS roll angle [deg]
MRAR air temperature [K]
MRAR air wind speed [m/s]
MRAR air wind direction [deg]

Table 2: Overview of available Mode-S EHS and MRAR parameters.

Available Mode-S data between 1 July and 31 October 2015 were analyzed (with a gap between
19 and 30 October due to technical problems with the data provision). The Mode-S EHS comprise
around 3.5 million of measurements per day and from that 85% is above 6000 meters. The Mode-S
MRAR are much less frequent and involve only around 140000 per day (66% above 6000 meters).
A typical reporting frequency is 10 s. The coverage of Mode-S data is illustrated in Figure 2. The
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diurnal cycle of the data availability follows air traffic over the Czech Republic with a broad peak
around noon and a very limited number of data at night.

Figure 2: Horizontal (left) and vertical (middle, right) coverage of Mode-S EHS/MRAR and AMDAR data
on 1 August 2015.

Aircraft type identification

Mode-S equipment on aircraft are assigned by a unique ICAO 24-bit address (ICAO address). The
ICAO address is assigned by flight authorities in each country and provides an unique identification of
a meteorological sensor of each aircraft. Although no centralized aircraft database is available publicly,
it is possible to relate ICAO address with aircraft type information either using online sources (various
flight tracking and/or place spotter websites) or using flight plans available to ANS CR. In this study
only the first approach is considered, but in the future a combination of both will be used to identify
as many aircraft as possible. The Mode-S data contain around 13000 different aircraft and around
2300 remained unidentified. Table 3 shows the number of aircraft from the most represented aircraft
types.

Type Number of aircraft Type Number of aircraft
Airbus A319 586 Bombardier Global 5000 69
Airbus A320 1170 Bombardier Global 6000 122
Airbus A321 460 Canadair CL604 Challenger 74
Airbus A330 538 Canadair CL605 Challenger 65
Airbus A340 146 Canadair CRJ 125
Airbus A380 173 Cessna 510 Citation Mustang 66
ATR 72 52 Cessna 560XLS Citation Excel 55
Boeing 737 1676 Dassault Falcon 2000EX 57
Boeing 747 405 Dassault Falcon 7X 110
Boeing 757 159 Embraer ERJ 293
Boeing 767 358 Gulfstream G450 63
Boeing 777 906 Gulfstream G550 70
Boeing 787 182 McDonnell Douglas MD 98
Bombardier Dash 8 Q400 98 unknown 2303

Table 3: Number of aircraft from different aircraft types (only types with more than 50 aircraft are listed).

6



1.3 Validation of Mode-S observation observations

Any measurement is prone to error, which depends on an instrumental accuracy and a methodology.
The accuracy of a new meteorological observation is widely assessed by comparison with other mea-
surements or with a NWP model (de Haan, 2011). Such a comparison provides only indirect error
estimation, since it combines errors of both the new and the reference data. An independent measure-
ment technique can be used to address systematic errors, e.g. a comparison of aircraft and radiosonde
measurement, (Schwartz and Benjamin, 1995). For an estimation of the standard deviation of obser-
vation errors even the same method using an independent instrument can be used, e.g. a comparison
of temperature measurement from different aircraft, (Benjamin et al., 1999).

Following studies of de Haan (2011) and Strajnar (2012) a collocation technique with respect to
AMDAR data and NWP model ALADIN/CHMI is used to validate available Mode-S data over period
of 1 July – 20 October 2015.

1.3.1 Mode-S and AMDAR collocation

Although both AMDAR and Mode-S belong to the same group of aircraft observation and AMDAR
and Mode-S MRAR temperature even originate from the same sensor, they differ due to a preprocessing
or the reporting frequency. The AMDAR preprocessing, which comprises smoothing and averaging,
precludes the absolute space and time match of AMDAR and Mode-S data. To find Mode-S and
AMDAR observation pairs, so called collocated observations, a predefined time mismatch and space
separation are allowed, see Table 4. When more possible pairs are found within defined criteria the
closest in the space is selected. There were found around 21000 MRAR - AMDAR pairs and around
384000 EHS - AMDAR pairs during the studied period from July till October 2015. Figure 3 shows
distributions of the collocated pairs.

Parameter separation
time difference 30 s
height difference 50 m
horizontal distance 15 km

Table 4: Time mismatch and space separation of collocated Mode-S and AMDAR pairs
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Figure 3: Distribution of Mode-S EHS/MRAR and AMDAR matches by height difference (left), horizontal
(middle) and time (left) separation.

Differences between Mode-S MRAR and AMDAR contain a small number of outliers, e.g. the
single erroneous AMDAR wind speed value of 361 m/s and several non-representative temperature
values close to the Prague airport, probably affected by local conditions on runway prior to takeoff or
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after landing. The outliers (differences larger than 4 K, 10 m/s and 50◦) were excluded from the data
analysis, e.g. histogram computations displayed in Figure 4, but the basic statistics for the complete
data set are indicated in the plots as well. Differences are mostly normally distributed and have small
spread, which means a good agreement of Mode-S MRAR data with AMDAR observations.

Mode−S MRAR − AMDAR

Temperature [K] 
data_plot: mean= −0.07 , sd= 0.31 K , N = 20948 

data_raw: maxrange=< −12.9 , 24.9 >, mean= −0.07 , sd= 0.38 K, N= 20958
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Figure 4: Histograms of Mode-S MRAR differences with respect to AMDAR for temperature (left), wind
speed (middle) and wind direction (right). Only the displayed value range was used to compute histograms and
extreme values are indicated below the plots.

The same gross error check (differences larger than 4 K, 10 m/s and 50◦ were excluded) was applied
to the differences between AMDAR and Mode-S EHS. The error check reduced the data sample by
around 1.6% of temperature and around 4% of wind speed collocations. The Mode-S EHS differences of
the temperature and wind direction are mostly normally distributed, see Figure 5. But the distribution
of wind speed differences shows a two peak distribution. The spread of the Mode-S EHS - AMDAR
differences is much larger than the spread of the Mode-S MRAR - AMDAR differences, for both wind
and temperature.

Mode−S EHS − AMDAR

Temperature [K] 
data_plot: mean= 0.32 , sd= 1.18 K , N = 377705 

data_raw: maxrange=< −303.4 , 5653.1 >, mean= 0.37 , sd= 12.5 K, N= 383810
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data_plot: mean= 0.31 , sd= 2.11 m/s , N = 369433 

data_raw: maxrange=< −348.1 , 885.6 >, mean= 9.22 , sd= 51.95 m/s , N= 383319
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Wind direction [Deg] 
data_plot: mean= 1.05 , sd= 11.25 Deg , N = 367331 

data_raw: maxrange=< −180 , 180 >, mean= 0.37 , sd= 23.92 Deg , N= 383319
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Figure 5: Histograms of Mode-S EHS differences with respect to AMDAR for temperature (left), wind speed
(middle) and wind direction (right). Only the displayed value range was used to compute histograms and
extreme values are indicated below the plots.

Difference statistics aggregated in one kilometer layers are shown in Figure 6. For most of Mode-S
MRAR collocations there is almost no temperature bias (it ranges from around 0.01 K to -0.1 K) and
only a small number below 1 km have a negative bias of -0.6 K. The root mean square (RMS) below
1 km is around 1.5 K and above it ranges from 0.6 K to 0.2 K. The Mode-S EHS collocations above
1 km are more biased (around 0.3 K). Although the temperature RMS slightly decreases with height,
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it is 3–5 times larger than MRAR RMS. Mode-S MRAR wind speed and wind direction collocation
biases are also minimal (it ranges from -0.06 to 0.05 m/s and from 0.1 to 0.6◦) and the RMS is around
0.7 m/s and 0.5◦, only small number of winds below 1 km have larger positive bias and RMS. The
Mode-S EHS wind speed collocations are mostly positively biased and the RMS is again 3–5 times
larger than MRAR RMS.

Reasons of the large increase of the collocations statistics below 1 km are not yet clear. Consid-
ering that especially of Mode-S MRAR statistics above 1 km are very small, measurements close to
ground are not expected to be worse. But height assignment and/or preprocessing of AMDAR data
is suspected to be an issue due to the higher atmospheric variability close to ground.
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Figure 6: Vertical profile of Mode-S differences with respect to AMDAR. BIAS (blue) and RMSE (red) are
displayed for each variable of MRAR (left) and EHS (middle) collocations with corresponding number of data
(right).

It is important to keep in mind that not all aircraft are equipped with AMDAR and the most
frequent Mode-S collocated aircraft types are listed in Table 5. Almost all (over 99%) Mode-S MRAR
- AMDAR differences come from Canadair CRJ aircraft and over 95% of Mode-S EHS collocations
come from Airbus A321, A320, A319, Canadair CRJ and Boeing 737. The two peak distribution of
the wind speed differences is linked to the aircraft type, see distribution per aircraft type in Figure 7,
but further investigation is needed to clarify the origin of errors in input parameters for Mode-S EHS
wind speed computations (ground speed, air speed and magnetic heading).

Aircraft type Number of Mode-S EHS collocations Number of Mode-S MRAR collocations
Airbus A321 120977 (31.5%) 0
Airbus A319 101357 (26.4%) 0
Airbus A320 93424 (24.4%) 0
Canadair CRJ 28759 (7.5%) 20849 (99.9%)
Boeing 737 17972 (4.7%) 0

Table 5: Number of Mode-S - AMDAR collocations for the most frequent aircraft types.

The RMS of Mode-S MRAR - AMDAR differences are comparable with estimated uncertainty of
AMDAR measurements, which means that the quality of Mode-S MRAR data is similar to AMDAR.
The Mode-S EHS are slightly more biased and the RMS is around 4 times larger. The latter results
are in line with the findings of de Haan (2011) who proposed more advanced preprocessing to improve
the quality of Mode-S EHS data.
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Airbus A321: Mode−S EHS − AMDAR
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Airbus A319: Mode−S EHS − AMDAR
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data_plot: mean= 0.28 [m/s], sd= 1.89 [m/s] , N = 87466 
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Canadair CRJ: Mode−S EHS − AMDAR
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Boeing 737: Mode−S EHS − AMDAR
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Figure 7: Distribution of Mode-EHS and AMDAR collocations for various aircraft types.

1.3.2 Mode-S validation with respect to NWP

AMDAR offers a good observation reference but is limited to AMDAR-equipped aircraft. An evalua-
tion of all Mode-S data is possible by a comparison with NWP model, which allows sufficiently large
samples for each single aircraft. However, such a comparison is limited by forecast and model errors.

The validation was performed for the Mode-S MRAR data only. The ALADIN/CHMI, detailed
in the section 1.1, is used as reference. During the examined period of 1 July – 20 October 2015
around 9 million Mode-S MRAR observations were collocated with the NWP model. Operational
ALADIN/CHMI forecast of various lengths (6–11 hours) were used to cover whole day with the most
recent model forecast. Analyses were avoided because AMDAR observations are assimilated in the
operational ALADIN/CHMI, which might limit a fair comparison. We assume that the method is
robust with respect to a slight decrease of the quality with forecast ranges (between 6 and 11 hours).
The assimilation configuration of the ALADIN model was used to obtain observation model equivalents
to compute observation and model departures.

Only statistically reasonable aircraft sample with more than 3000 collocations are passed to data
quality check. This statistical pre-selection reduced sample of data by 5% and number of aricraft by
50%. A good quality observations were selected based on criteria (mean and standard deviation of
observation and model departures) partly following Strajnar et al. (2015), see Table 6.

number of obs mean std
Temperature 3000 <1 K <2 K
Wind speed 3000 <1 m/s <5 m/s
Wind direction 3000 <10◦ <100◦

Table 6: Criteria used to generate MRAR white list of aircraft with reliable observations.

Temperature Wind

Ndata Naircraft Ndata Naircraft

Total 9139677 846 9139677 846
After statistical check (n=3000) 8541019 (94%) 409 8686561 (95%) 410
After quality check 7020445 (77%) 272 7328643 (80%) 281

Table 7: Number of Mode-S MRAR - NWP collocations from 1 July – 20 October 2015.

Figure 8 shows distributions of Mode-S MRAR differences with respect to the NWP model before
and after applying the quality criteria. The raw wind differences are mostly normally distributed,
while temperatures are rather positively biased. The differences after quality check do not have any

10
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selected_data_plot: mean= 0.79 , sd= 1.21 K , N = 400
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Figure 8: Histograms of Mode-S MRAR differences with respect to the NWP model ALADIN/CHMI for
temperature (left), wind speed (middle) and wind direction (right). The differences after quality check are in
blue. Only the displayed value range was used to compute histograms and extreme values are indicated below
the plots.
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Figure 9: Vertical profiles of Mode-S MRAR differences with respect to the NWP model ALADIN/CHMI.
BIAS (blue) and RMSE (red) are displayed for each variable before (left) and after the quality check (middle)
with corresponding number of data (right).

systematic error, which is essential for the data assimilation. The differences were aggregated in one
kilometer layers, see Figure 9. The temperature bias mostly increases with height and it is reduced
by the quality check. Wind speed observation have almost no bias and the RMS is around 2.5 m/s
and 3.5 m/s. Wind direction has only small bias of a few degrees below 3 km and the RMS ranges
between 12 and 25◦.

The quality analysis of Modes-S MRAR observations was prepared separately for temperature and
wind. Approximately 77% of temperature observations from 271 aircraft (30% of the total number
of aircraft) and 80% of wind observations from 281 aircraft (33% of the total number of aircraft)
fulfiled required criteria, see Table 7. Finally the intersection of accepted aircraft for temperatures
and winds was found to create a white list of 203 aircraft with reliable observations to be used in data
assimilation experiments.
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1.4 Assimilation impact study of Mode-S MRAR data

Only Mode-S MRAR observations are used in our first assimilation impact studies. For better read-
ability Mode-S MRAR will be referred as MRAR in this section. The impact of MRAR observations
in the NWP system ALADIN/CHMI is investigated by running two experiments. A reference ex-
periment (REF) with the operational ALADIN/CHMI settings, detailed in the section 1.1, and a
sensitivity experiment (EXP) with MRAR data added on a top of all observations assimilated in REF
(i.e. SYNOP, TEMP, AMDAR, AMV and SEVIRI). For the first approximation both experiments are
based on the 6-hour assimilation cycle only and production forecast for +54 hours is omitted. There
are a few motivations for such experimental design. The impact of Mode-S observations is expected
mainly for the first hours of a forecast (De Haan and Stoffelen, 2012) and hence the 6-hour forecast in
the assimilation cycle is sufficient for the first study. Furthermore, experiments without productions
are less time and computationally consuming.

1.4.1 Verification methodology

The MRAR data are very high resolution and local, covering only the Czech Republic and its near
surroundings. To verify the impact of MRAR on forecast, an appropriate observational reference is
needed. In order to properly address the impact of MRAR observations, verification is limited to a
sub-area of the model domain covered by Mode-S observations displayed in Figure 10 (right). The
sub-domain is well-covered by AMDAR and MRAR observations at the upper levels, whereas there are
limited TEMP observations available at 00, 12 UTC (12 stations) and even less at 06 and 18 UTC (5
stations). Despite the sparse coverage, all observations AMDAR, TEMP and MRAR are used for the
verification. In case of the comparison with MRAR themselves the interpretation of the verification
scores should be aware of altitude-dependent density of MRAR (Strajnar et al., 2015) with good
domain coverage at higher levels and local coverage (around airports) at low altitudes. As for TEMP
observations the interpretation of the verification results should be aware of the sparse coverage at 06
and 18 UTC, which can affect the average statistics at particular levels and ranges.
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Figure 10: Horizontal coverage of MRAR (blue), AMDAR (green) and TEMP (red) observations at 12 UTC
for 18 July 2015 (left). The sub-area used for verifications (right).

For verification purpose, the MRAR and AMDAR observations ±30 minutes around each hour are
used. The verification sample of MRAR observation includes the subset of independent observations
not assimilated in analysis time. Three main statistical scores are computed using departures of
forecasted parameters H(xf )i at the observation points and actual measured values yi:
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• mean absolute error MAE = 1
n

N∑
i=1

(|H(xf )i − yi|)

• root mean square error RMSE =
√

N∑
i=1

1
N (H(xf )i − yi)2

• standard deviation STDE =
√

(RMSE2 −MAE2)

1.4.2 Impact of MRAR observations on assimilation cycle

Impact of MRAR observations on assimilation cycle was evaluated for the period 1 June – 30 June
2015. The hourly temperature and wind forecast up to +6 h from 00, 06, 12 and 18 UTC were com-
pared with AMDAR, TEMP and MRAR observations.

Comparison with AMDAR and TEMP observations
Figure 11 shows the statistics of the model forecast against AMDAR (columns 1–2) and TEMP
(columns 3–4) observations for the experiments REF and EXP at the levels (400 hPa and 700 hPa).
In both comparisons, the experiment EXP using MRAR observation shows an increase of RMSE and
MAE at analysis time when compared to the experiment REF. This detrimental effect is because of
AMDAR and TEMP observations are already assimilated in the reference experiment and the same
data are also used for the verifications. In case of AMDAR verification, this effect is propagated to
the first hour of forecast when we assimilate both AMDAR and MRAR data within the ±90 minutes
assimilation window.
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Figure 11: Statistics for the comparison of the model forecast against AMDAR (columns 1–2) and TEMP
(columns 3–4) observations for experiments REF (black) and EXP (red) at 400 hPa and 700 hPa. The MEA
(dash lines) and RMSE (solid lines) are plotted for (top to bottom) temperature, wind speed and wind direction.

For both AMDAR and TEMP verifications we observed almost neutral impact on RMSE for all
parameters in the next 2–6 hours of forecast. Only a small degradation of MAE for the wind speed
at the higher levels (300 hPa and 400 hPa) and the small positive impact of assimilating MRAR data
on the MAE of the wind direction at the 700 hPa level were detected.
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Comparison with Mode-S MRAR observations
Figure 12 shows the statistics of the model forecast against MRAR observations for both experiments
at the same levels (400 hPa and 700 hPa). Obviously at analysis time, experiment EXP using MRAR
observation show the lowest RMSE and MAE when compared to MRAR. At higher levels a positive
impact of assimilating MRAR is observed for RMSE and MAE, however this impact disappear after
few hours (1–2 h). The duration of the positive impact differs for different levels and parameters. A
slight positive impact on RMSE is observed up to 3 hours for temperature as well as up to 6 hours of
forecast for both wind parameters.
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Figure 12: Statistics for the comparison of the model forecast against Mode-S MRAR observations for exper-
iments REF (black) and EXP (red) at 400 hPa (left) and 700 hPa (right). The MEA (dash lines) and RMSE
(solid lines) are plotted for (top to bottom) temperature, wind speed and wind direction.

Overall, the results indicate that MRAR data assimilation has a positive impact on the wind at
the lower levels, while at the higher levels, there is a neutral impact on all parameters in RMSE and
the MAE degradation of the wind speed. The negative effect is probably due to overfitting of the
MRAR observations in analysis and can be enhanced by spreading the MRAR information outside
their location due to the simplified background error covariance structures. The preliminary results are
encouraging and an optimization of MRAR data assimilation, e.g. tuning of the observation weights,
will be a subject of the further investigation.

1.5 Diagnostic analyses

The goal of diagnostic analyses is to produce atmospheric state as close as possible to reality taking
into account all available information, such as observed data, the NWP model, physical constrains
and climatology. Diagnostic analyses aim to provide an up-to-date three dimensional state of the
atmosphere in chosen grid as soon as possible. They can be seen as nowcasting for period of 0 hour.
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Figure 13: The diagnostic analyses are using as first guess the operational forecast of the ALADIN/CHMI
model for different lead times, this is denoted by F+n hour forecast in the figure.

Diagnostic analyses help to identify regions where severe weather events, such as wind sheer, turbulence
or convection, could appear. Detection of such regions is very important for the safety of air traffic.
Furthermore, a comparison of diagnostic analyses with issued weather forecast gives a feedback to
forecast quality.

The interpolation of available observations is not sufficient for a comprehensive description of the
current atmospheric state. Moreover, many observations are not available in near real time, but
with a considerable delay. We propose a combination of observations with the first guess given by
the operational NWP model ALADIN/CHMI to provide diagnostic analyses. Atmospheric fields are
analyzed using the 3D-Var method and near-surface parameters by OI method. An automatic system
to produce such diagnostic analyses was designed. The system settings and the first results follows.

1.5.1 Setup

The quality of diagnostic analyses rely upon input data and used methodology. ALADIN/CHMI
operational forecasts with different lead times are used as the first guess, see Figure 13, to exploit the
latest model outputs.

A baseline setup of the 3D-Var and OI methods relies on the BlendVar configuration operational
at CHMI, described in the section 1.1. The first difference is the order of the 3D-Var and OI method,
which is swapped. Initialization of soil variables is assumed to be less important for the diagnostic
analyses and it is suppressed. In that case analysis of upper-air variables is done first. The OI method is
employed afterwards to analyze screen-level parameters, such as 2 m temperature and relative humidity
and 10 m wind speed and wind direction. This concept is not used in the operational framework
because the above mentioned screen-level parameters are diagnosed and can not be incorporated into
the subsequent model forecast. The setup of OI method is tuned to consider only surface stations up
to altitude of 1500 m. The observations where the difference between the model orography and the
station altitude is larger than 800 m are not assimilated. The horizontal correlation length-scale are
decreased in the OI analysis to make it more local.

Similarly, the 3D-Var method can be further tuned to fit the observation closer. Following Auger
and Teseva (2004) the model standard deviation error decrease can be beneficial. Reformulation of
the background error covariance matrix generated by local ensemble of assimilation with perturbed
observations (Berre et al., 2006) will be investigated.

The number of available observations is varying during time of a day. The observation processing
starts with a delay to collect as much observations as possible to constrain the analysis. The delay of
20 minutes seems to be a reasonable compromise between the number of available observations and
the time of the diagnostic analysis availability, e.g. approximately 30 minutes after its validity time.
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Figure 14: The average number of available observations at analysis start (empty boxes) and the average
number of used observations in the upper-air analysis (filled boxes).

Near-surface observations are collected from synoptic and automatic stations. Around 3700 near-
surface observations are assimilated by OI method. These observations comprise surface pressure,
2 m temperature and relative humidity, 10 m wind speed and wind direction. However, only surface
pressure from near-surface observations is used in the upper-air analysis. Aerological soundings are
important source of upper-air information. Unfortunately they are available only 2–4 times a day at 00,
06, 12, 18 UTC and they come too late to be used in diagnostic analysis. Approximately 500 radiances
from Meteosat-10 and only a few atmospheric motion vectors (AMV) are assimilated in the upper-air
analysis. For every analysis in the daytime (05–21 UTC) there are around 1400 aircraft observations
from AMDAR reports available, while at night (22–04 UTC) their number is very low. Figure 14
shows average number of available observations at analysis start and assimilated observations for each
analysis. Overall about 2500 observations are assimilated in the upper-air analysis in the daytime.
Around half of used observation comes from aircraft and this number will be further increased by
MRAR observations. It is expected that the total number of assimilated observations will be increased
by Mode-S MRAR data by half.

1.5.2 First results

A temperature inversion was observed over Prague on 3 December 2015 at 06 UTC. Aerological
sounding is not available when analysis production starts and sounding data are used as reference.
The first guess captured the inversion already quite well, see Figure 15. Only other source of vertically
dense observations are aircraft measurements. Whereas the reference analysis already assimilating
AMDAR observations did not improve description of the inversion (blue line), the analysis assimilating
MRAR observations (green line) is much closer to the aerological sounding (black line) and MRAR
observations (light blue crosses).

The first impact study is promising and shows better description of temperature inversion thanks
to MRAR data assimilation. The prototype of hourly diagnostic analyses production is prepared. The
analysis scheme is based on 3D-Var and OI methods of ALADIN/CHMI system and like this it can
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Figure 15: The comparison of analysis with and without MRAR observations and corresponding observations.

assimilate conventional observations, including MRAR data and satellite radiances. Moreover, it is
ready to assimilate other remote sensing observations, such as Doppler winds and reflectivity from
ground-based radars and ground-based GPS measurements. The prototype can be further improved
to comply with the nowcasting spirit of the diagnostic analyses, e.g. fit to observations can be further
increased and the background error covariances can be tuned.

1.6 Summary

Aircraft-based observations are beneficial for the aviation community, NWP regional modeling and
nowcasting applications. New Mode-S observations available via the modern air traffic surveillance
systems were investigated.

The quality of Mode-S temperature and wind observations available in the airspace of the Czech
Republic was assessed. The collocation with AMDAR observations revealed that Mode-S EHS ob-
servations have larger variability and errors. Mode-S MRAR observations are of comparable quality
to AMDAR and they are suitable for data assimilation simply after the quality check based on the
statistics of differences with respect to the NWP model.

The state-of-the-art NWP system ALADIN/CHMI was used to evaluate impact of new aircraft
Mode-S MRAR observations on forecast. An appropriate observational reference for verification is
questionable considering very high resolution of MRAR data in time and space. Verification against
soundings and AMDAR aircraft observations showed mostly neutral impact, slight degradation was
found at higher levels, while slight positive impact was observed at lower levels for wind. Verification
against independent Mode-S MRAR observations, which are considered as suitable high resolution
reference, showed clear positive impacts in the first forecast hours.

Use of Mode-S MRAR observations was explored to improve a near real time high resolution
diagnostic analysis with promising results. Such analyses aim to provide self-consistent diagnostic
of the atmosphere using all available observation and the NWP model as soon as possible. Key
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issue is a fast provision and processing of all available observation to constrain the analysis. The
prototype of hourly diagnostic analyses production was prepared. The system relies on the NWP
model ALADIN/CHMI and it can assimilate Mode-S MRAR observation and also other conventional
and remote sensing observations.

Newly developed methods to derive aircraft observations seems to be a promising extension of
aircraft observation coverage over Europe. The observations have a potential to improve the first
hours of NWP forecast. They are also beneficial for the aviation community for current and future
air traffic management concepts, both as observations and via improved and more accurate weather
forecast.
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