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1 Introduction

This report summarizes studies performed at CHMI during the first half of 2013. The upper-air
analysis scheme was of our main interest with aim to replace the operational digital filter (DF)
blending scheme (Brožkova et al 2001) by 3DVAR based technique which uses observation directly.

The analysis scheme was tested in a simplified experimental framework. The aim was to quickly
check performance of the ALADIN 3DVAR and to prepare a baseline setup for further development.

The experimental setup is described in section 2. Section 3 is dedicated to background errors
diagnostics. Impact of selected background errors is presented in section 4. The background and
observation error diagnostics and their tuning is examined in section 5. Performance of the baseline
setup is presented in section 6 and the conclusions are given in the last section.

2 Experimental setup

The local ALADIN/CE model release 36t1ope as operational in July 2011 was used. It comprised
horizontal resolution of 4.7 km and 87 vertical levels, linear truncation E269x215, mean orography,
3h coupling interval and time step 360 s.

The ALADIN 3DVAR analysis scheme was used with ensemble based background errors in the
simplified experimental framework. It consisted of an experiment without assimilation cycling,
the surface analysis and initialization were suppressed. The conventional data SYNOP (φ) and
TEMP (T, q, wind) were assimilated. Dynamical adaptation was used as reference.

The two days forecasts were performed for the two weeks period of February 1-14, 2013.
The objective scores against observation were evaluated by verification package VERAL. The BIAS,
STDE and RMSE scores were computed from differences between the forecasts and observations
(SYNOP and TEMP). The same scores were computed with respect to ARPEGE and/or ECMWF
analyses and the significance tests described in Fisher (2002) of the RMSE differences were performed.

3 Background error statistics

Background error statistics (further referred also as B) are essential 3DVAR component. There are
several typical characteristics which are usually examined, e.g. standard deviations which correspond
to the expected amplitude of background errors, correlations (or length-scales) that determines how
local observation is spatially filtered and propagated to the neighborhood, and cross-covariances
between the different variables (divergence, vorticity, temperature, surface pressure and humidity)
which usually reflect physical couplings between different variables, e.g. geostrophic balance.

The background errors were produced for three months period of February - May 2011 based
on NMC, NMC lagged and ensemble method. Their typical diagnostics were briefly checked. The
first four members (memi) from Assimilation Ensemble of global model ARPEGE (AEARP) were
downscaled to ALADIN/CE resolution. The background errors were sampled from 240 +6H forecast
differences (mem1−mem2, mem3−mem4) valid at 00, 06, 12 and 18 UTC and 960 differences valid
in all (00, 06, 12 and 18UTC) analysis times, they will be referred as ENS 00, ENS 06, ENS 12,
ENS 18 and ENS all.

The ensemble based standard deviations were mostly the smallest, while Berre et al (2006) and
Fischer et al (2005) presented the ensemble based standard deviations intermediate between NMC
lagged and NMC. The same feature was apparent on the horizontal variance spectra, see Fig 1. One
possible explanation for this can be that AEARP uses 4D-Var (instead of 3D-Var) since 2010 and
the derived standard deviations were smaller for Arpege ensemble 4D-Var than for Arpege ensemble
3D-Var by a factor around 1.5 (L. Berre personal communication). Regarding cross-covariances
except generally smaller values for the ensemble based B no particular discrepancy was found, for
an illustration see Fig 2.
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Fig. 1: Vertical profile of the standard deviation for temperature [K] and variance spectra of temperature

at level 63 (around 844 hPa) for the NMC, the NMC lagged and the ensemble based methods.

Fig. 2: Divergence/vorticity coupling - mean vertical cross-covariance between divergence and vorticity-

balanced φ [10−5 J/kgs−1] for the NMC (left), the NMC lagged (middle) and the ENS 12 (right).

The length-scales of ensem-
ble based B were mostly
the largest above 100 hPa,
see Fig 3. Disregarding the
changes in AEARP, the NMC
method based on differences
between 36H and 12H fore-
casts was expected to pro-
vide overestimated error cor-
relations, thus smaller ensem-
ble based covariances values
seemed reasonable. It was
hard to make any judgment
regarding an intercomparison
of NMC lagged and ensemble
based B. Fig. 3: Vertical profile of the length-scales.
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The ensemble based back-
ground errors are believed
to better represent analysis
step and the short range
forecast range (Berre et al
2006). A dependency of the
B sampling on analysis time
was of our interest. The
vertical profile of the stan-
dard deviations, displayed
on Fig 4, illustrated this
dependency. The differences
for 12 and 18UTC mainly in
lower levels may be related
to atmospheric stratification.
Similarly broader and larger
auto-correlation and cross
covariances were found for 12
and 18UTC, see Fig 5.

Fig. 4: Vertical profile of the standard deviation for temperature [K],

specific humidity [kg/kg]. divergence [s−1] and vorticity [s−1].

Fig. 5: Mean vertical cross-covariance between divergence and vorticity-balanced [10−5J/kgs−1] (left),

temperature and unbalanced divergence [10−6K/s] (middle) and humidity and unbalanced divergence

[kgkg−1s−1] (right) for 00UTC (top) and 12UTC (bottom)

Detailed analysis of various background errors estimations methods was beyond the scope of this
report. The typical diagnostics were presented to briefly check available background errors. Further
diagnostic figures can be found in appendix A.
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4 Impact of selected background errors

Following experiments with ENS 00 and ENS 12 were performed to examine impact of various back-
ground errors. The forecasts starting from 00 and 12 UTC were run for the evaluation period.

• Y84 - 3DVAR ENS 12

• Y86 - 3DVAR ENS 00

4.1 Scores against observations

Better performance of ENS 00 for 00UTC forecasts while ENS 12 for 12UTC ones was expected, but
only very small differences between their usage were found in comparison with respect to default ref-
erence - dynamical adaptation. The results are illustrated on following Fig. 6-Fig. 8 for the humidity
scores. Other variables had similar behavior (not shown).

Fig. 6: RMSE differences of RH for 1-14 Feb 2013 of 00 UTC (top) and 12 UTC (bottom) runs. Red

areas denote positive impact of the usage of ENS 00 (left) and ENS 12 (right) with respect to dynamical

adaptation. The white circles points that RMSE difference is better/worse with significance 95 % two-side

confidence interval.

Fig. 7: RMSE (left) and BIAS for RH2m (right) for 1-14 Feb 2013 of 00 UTC runs. The experiment Y86

in blue, Y84 in red and reference Y53 in black.
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Fig. 8: as previous figure, but BIAS differences of RH. Blue/red areas denote positive/negative differences

of the BIAS scores.

Direct inter-comparison of the two experiments 3DVAR ENS 00 vs 3DVAR ENS 12 against
observation showed quantitative differences, but more or less neutral scores.

Fig. 9: RMSE differences of T (upper-left), RH (upper-right), φ (bottom-left) and wind speed (bottom-

right) for 1-14 Feb 2013 of 00 UTC runs. Red areas denote better performance of ENS 00 over ENS 12. The

white circles points that RMSE difference is better/worse with significance 95 % two-side confidence interval.

At analysis time for both 00 UTC and 12 UTC runs the ENS 00 performed a little bit better
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for relative humidity near 500 hPa, for temperature and wind speed between 850-200 hPa. While
ENS 12 had smaller RMSE for geopotential up to 200 hPa, for humidity below 850 hPa and between
300-200 hPa, for temperature below 850 hPa and for wind speed at 1000 hPa at analysis time.

Fig. 10: RMSE differences of T (upper-left), RH (upper-right), φ (bottom-left) and wind speed (bottom-

right) for 1-14 Feb 2013 of 12 UTC runs. Red areas denote positive impact of the usage of ENS 12UTC

B matrix. The white circles points that RMSE difference is better/worse with significance 95 % two-side

confidence interval.

The correlation between the impact on analysis and the background standard deviations was noticed,
e.g. the higher the background stde of temperature the bigger positive impact, see next Figure. This
might hamper a fair experimental evaluation.

Fig. 11: Vertical profile of temperature background error standard deviation (left), the RMSE differences

of T for 3DVAR ENS 00 with respect to 3DVAR ENS 12 for 00UTC runs (right).

4.2 Scores against ARPEGE analyses

The scores against ARPEGE analyses were mostly neutral. Only very small signal was found in rel-
ative humidity, for both 00 UTC and 12 UTC run ENS 00 performed slightly better at 400 hPa
while ENS 12 at 700-850 hPa.
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Fig. 12: RMSE differences of T (upper-left), RH (upper-right), φ (bottom-left) and wind speed (bottom-

right) for 1-14 Feb 2013 of 00 UTC runs. Red areas denote better performance of ENS 00 over ENS 12.

Fig. 13: RMSE differences of T (upper-left), RH (upper-right), φ (bottom-left) and wind speed (bottom-

right) for 1-14 Feb 2013 of 12 UTC runs. Red areas denote better performance of ENS 00 over ENS 12.
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4.3 Scores against ECMWF analyses

The scores against ECMWF analyses were qualitatively the same as ARPEGE ones.

Fig. 14: RMSE differences of T (upper-left), RH (upper-right), φ (bottom-left) and wind speed (bottom-

right) for 1-14 Feb 2013 of 00 UTC runs. Red areas denote better performance of ENS 00 over ENS 12.

Fig. 15: RMSE differences of T (upper-left), RH (upper-right), φ (bottom-left) and wind speed
(bottom-right) for 1-14 Feb 2013 of 12 UTC runs. Red areas denote better performance of ENS 00
over ENS 12.
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Summary: Based on performed comparisons it was not possible to make any conclusion about
better performance of ENS 00 or ENS 12 for the 3DVAR baseline setup. Considering quantitative
differences of various ensemble matrices the experimental evaluation as presented in this section was
not found beneficial.

5 Error diagnostics and tuning

Background and observations contribute to analysis proportionally to their errors. The errors are
not perfectly known and their determination is an important task for data assimilation research and
development.

Desroziers et al (2005) proposed a posteriori diagnostics that are supposed to represent the real
standard deviations of observation and background errors in the given data assimilation system. The
diagnosed values divided by the predefined ones define the ratio r =

σdiagnosed

σpredefined
to be used for tuning

of analysis.
The package for the computation of the diagnostics was kindly provided by Bölöni (2010). In

ALADIN 3DVAR the tuning was done by multiplying REDNMC and SIGMAO COEF namelist
parameters via the mean ratios. It was found that SIGMAO COEF implementation in BATOR
(CY36T1) is not applied to SYNOP geopotential, T2m, RH2m and to TEMP geopotential, humidity,
T2m and RH2m. This was corrected and the modified BATOR was used in following experiments.

5.1 3DVAR ENS all

The error diagnostics of 3DVAR ENS all were studied for the testing period. The decision on used
background errors was ad hoc. The diagnostics showed that the background errors were under-
estimated, except for kinetic energy, while the observation errors are overestimated, see Table 1.

Exp ENS all

Var cases ro rb
q 10321 0.61941 1.21313

T 17424 0.84735 1.53390

Ek 17655 0.75862 0.78490

Mean 45400 0.76589 1.21538

Table 1: The ratios of diagnosed/predefined standard deviations for observations ro and background rb

The diagnostic and the new experiment with retuned REDNMC and SIGMAO COEF (iteration)
were performed three times to obtain mean tuning ratio close to one. The diagnostics results were
summarized in Table 2.

Exp Y88 Y89 Y90

Var cases ro rb cases ro rb cases ro rb
q 10327 0.67346 1.11380 10327 0.67063 0.94799 10327 0.64998 0.85763

T 17428 1.00326 1.62716 17429 1.06875 1.54322 17430 1.07456 1.45898

Ek 17657 0.88722 0.78246 17660 0.94684 0.70839 17660 0.95286 0.65623

Mean 45412 0.89190 1.23946 45416 0.94298 1.14605 45417 0.94459 1.07313

Table 2: The ratios of diagnosed/predefined standard deviations for observations ro and background rb

The list of the error tuning experiments follows:

• Y81 - 3DVAR ENS all
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• Y88 - 3DVAR ENS all REDNMC=1.2 SIGMAO COEF=0.8 (iteration 1)
• Y89 - 3DVAR ENS all REDNMC=1.5 SIGMAO COEF=0.7 (iteration 2)
• Y90 - 3DVAR ENS all REDNMC=1.7 SIGMAO COEF=0.67 (iteration 3)

5.2 Scores against observation

The impact on the forecast was evaluated for all three iterations. Better fit to observations was
obtained mostly for analysis.

Fig. 16: RMSE differences of T (left), RH (middle), wind speed (right) for 1-14 Feb 2013 of 00 UTC runs.

Red areas denote positive impact of the usage of the tuning iterations.

Fig. 17: The time evolution of RH700 BIAS at analysis time Y81 in black, Y88 in red, Y89 in light dashed blue

and Y90 in dark blue color. The number of TEMP observation used for verification in solid blue.

Summary: The diagnostics showed that the ensemble based background errors are underestimated,
except for kinetic energy, while the observation errors are overestimated. There were quantitative
differences for each variable and the use of mean value is thus questionable. The tuning of errors
proved potential to improve analysis mostly.
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6 Baseline setup

The experiment Y90 - 3DVAR ENS all with REDNMC=1.7 and SIGMAO COEF=0.67 was consid-
ered as the baseline setup and the results were evaluated with respect to the dynamical adaptation.

6.1 Scores against observation

The comparison against observation showed clear positive impact for analysis and also for longer
forecast ranges of some parameters, e.g. T850 and RH500 up +18H.

Fig. 22: RMSE differences of T (upper-left), RH (upper-right), φ (bottom-left) and wind speed (bottom-

right) for 1-14 Feb 2013 of 00 UTC runs. Red areas denote positive impact of the usage of the Y90 vs

dynamical adaptation. The white circles points that RMSE difference is better/worse with significance

95 % two-side confidence interval.

The BIAS scores were mostly improved, the most for RH500 by more than 10 %, for other variables
in a lesser extent. Qualitatively the 3DVAR implied slight cooling below 700 hPa and upward of
200 hPa and warming around 500 hPa, for humidity prevails intensive drying between 700 hPa and
300 hPa.
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Fig. 23: BIAS differences of T (upper-left), RH (upper-right), φ (bottom-left) and wind speed (bottom-

right) for 1-14 Feb 2013 of 00 UTC runs. Blue/red areas denote positive/negative differences of the BIAS

scores.

The screen level parameters showed a small improvement for analysis time, except cloudiness.

Fig. 24: RMSE of MSLP (left), T2m (middle) and RH2m (right) for 1-14 Feb 2013 of 00 UTC runs.

The experiment Y90 red and Y53 in black. The circles points that RMSE difference is better/worse with

significance 95 % two-side confidence interval.
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Fig. 25: RMSE of accumulated 6h precipitation (left), cloudiness (middle) and BIAS for cloudiness (right)

for 1-14 Feb 2013 of 00 UTC runs. The experiment Y90 in red and Y53 in black.

6.2 Scores against ARPEGE analyses

The RMSE scores against ARPEGE analyses showed overall degradation for analysis, +6H and
many parameters at +12H forecasts. The dynamical adaptation as reference posed very hard limit
for comparison. The distance of the 3DVAR experiment increased with respect to ARPEGE.

Fig. 1: RMSE differences of T (upper-left), RH (upper-right), φ (bottom-left) and wind speed (bottom-

right) for 1-14 February 2013 of 00 UTC runs. Red areas denote positive impact of the Y90 vs dynamical

adaptation. The white circles points that RMSE difference is better/worse with significance 95 % two-side

confidence interval.
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The BIAS scores against ARPEGE analyses of the 3DVAR baseline experiment Y90 showed
slight warming between 700 - 400 hPa and cooling at 300-100 hPa, for humidity there was clear dry-
ing up to 250 hPa and moistening above up to 100 hPa. The wind speed BIAS was slightly larger,
while for the geopotential slightly smaller values were found at analysis, except level 400 hPa.

Fig. 2: BIAS differences of T (upper-left), RH (upper-right), φ (bottom-left) and wind speed (bottom-

right) for 1-14 February 2013 of 00 UTC runs. Blue/red areas denote positive/negative differences of the

BIAS scores.
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6.3 Scores against ECMWF analyses

The RMSE scores against ECMWF analyses showed smaller differences than in the comparison
against ARPEGE.

Fig. 1: RMSE differences of T (upper-left), RH (upper-right), φ (bottom-left) and wind speed (bottom-

right) for 1-14 February 2013 of 00 UTC runs. Red areas denote positive impact of the Y90 vs dynamical

adaptation. The white circles points that RMSE difference is better/worse with significance 95 % two-side

confidence interval.
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The BIAS scores against ECMWF analyses were qualitatively the same as against ARPEGE.

Fig. 2: BIAS differences of T (upper-left), RH (upper-right), φ (bottom-left) and wind speed (bottom-

right) for 1-14 February 2013 of 00 UTC runs. Blue/red areas denote positive/negative differences of the

BIAS scores.

Summary: The RMSE scores against analyses were mostly degraded, but the scores against ob-
servations showed improvement (better fit to assimilated observations). This discrepancy should be
better understood. The BIAS scores (against observations and both analyses) showed the consis-
tent signal: drying up to 250 hPa, slight cooling around 850 hPa and 200 hPa and warming between
700-400 hPa.

7 Conclusions

The studies dedicated to the 3DVAR baseline setup were presented. Performed experiments did
not bring an indication for optimal background error sampling. The bug was identified in the SIG-
MAO COEF implementation in BATOR and with the correction the tuning of the errors showed
potential to improve analysis mostly. The encouraging baseline setup results were obtained and will
be used in further tests with more observation types.
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