#### RC LACE - Use of None-GTS data in ALADIN assimilation

Investigation of the use of non-GTS SYNOP reports in the ALADIN/HU CANARI + 3D-VAR

system Michal Nestiak Slovak Hydrometeorological Institute michal.nestiak@shmu.sk June 2009

#### 1. Introduction

This work starts from the conclusions of the work "Investigation of the use of non-GTS SYNOP reports in the ALADIN/HU 3D-VAR system" by Sandor Kertesz (May 2007). It was about comparing impact of sole use of SYNOP reports in GTS instead of using all avaible non-GTS SYNOP reports from LACE countries in data assimilation. At the time of the Kertesz's experiment, surface assimilation did not run in HMS. That was the reason why he used only 3DVar which is only for upper air assimilation. But SYNOP observations as z, T2, relative humidity are used in 3DVar too but only for upper fields. Surface fields from the ARPEGE analysis were copied into the ALADIN background. One of the conclusions of the work was that the results are better when CANARI or another type of surface assimilation is used, because the usage of SYNOP data is not optimal without it. That was the one of the reasons why was same experiment done with suface assimilation CANARI. We used the same 10-day period, for which LACE members provided data, and made experiments with CANARI and 3D-VAR.

#### 2. Description of the experiments

Experimental period was from 10 to 20 May 2005. ALADIN CY30T1 was used, what is an important change with respect to previous experiment of Kertesz, who employed CY28T3. Two sets of experiments were done.

LSHD - only GTS data LSND - both GTS and non-GTS data.

In each experiment a 6 hour assimilation cycle with a  $\pm$ 3 hour observation window was used. We ran 48 hour model integrations starting at 00 and 12 UTC. In the experiments were used SYNOP,TEMP,AIREP, AMV winds (from MSG), Wind profiler observations and NOAA AMSU-A and AMSU-B sensors.

For the CANARI in the experiments the following set of data was restricted. SYNOP: Ps, T2m, RH2m, 10m Wind TEMP: P, Wind, T, Q

### 3. Results

Verification was done against ARPEGE analysis. Impact of non-GTS data is not very clear. In geopotencial, small possitive impact is in 00 UTC run in lower levels (1000-400hPa). But also negative impact is in 12 UTC run in upper levels and more degradation at the end of the forecast for pressure levels 600-200hPa. In temperature, possitive impact is for 00 UTC run. In the wind field, the best impact is for 00 UTC run.In evolution of scores with forecast range we expect biggest impact on the start in lowest level, but no impact of Non-GTS data is possible to see there.

Bottom is possible to see that the difference between number of the lines in LSHD and LSND experiment obs file is not very big.

| Date        | diff | LSHD   | LSND   |
|-------------|------|--------|--------|
| 20050511 00 | 113  | 484368 | 484481 |
| 20050511 12 | 128  | 505117 | 505245 |
| 20050512 00 | 121  | 500304 | 500425 |
| 20050512 12 | 125  | 548095 | 548220 |
| 20050513 00 | 144  | 515241 | 515385 |
| 20050513 12 | 128  | 524852 | 524980 |
| 20050514 00 | 125  | 456608 | 456733 |
| 20050514 12 | 127  | 528055 | 528182 |
| 20050515 00 | 123  | 423568 | 423691 |
| 20050515 12 | 127  | 474978 | 475105 |
| 20050516 00 | 123  | 380946 | 381069 |
| 20050516 12 | 125  | 573440 | 573565 |
| 20050517 00 | 120  | 410064 | 410184 |
| 20050517 12 | 128  | 559869 | 559997 |
| 20050518 00 | 122  | 420033 | 420155 |
| 20050518 12 | 129  | 540918 | 541047 |
| 20050519 00 | 122  | 273520 | 273642 |
| 20050519 12 | 128  | 316549 | 316677 |
| 20050520 00 | 129  | 452397 | 452526 |
| 20050520 12 | 128  | 539270 | 539398 |



**Fig.1:** Verification against ARPEGE analysis: RMSE difference in geopotencial, temperature and relative humidity between forecast with only GTS data and also with local LACE Non-GTS data. Red is improvement and blue is degradation of forecast for the pressure level and time. White circles show that the difference is significant on a 90% confidence level.



**Fig.2:** Verification against ARPEGE analysis: RMSE difference in wind between forecast with only GTS data and also with local LACE Non-GTS data. Red is improvement and blue is degradation of forecast for the pressure level and time. White circles show that the difference is significant on a 90% confidence level.















Evolution of scores with forecast range eriod: 20050510...20050518 Network: 0UTC



## 4. Conclusions

Veral scores are generally very neutral near the surface. There are some differences on higher levels. Most diferrences is possible to find for temperature and humidity but the impact is not relevant. For some levels and variables LSND is slightly better, for some others it is worse. Scores against the ARPEGE analysis are showing some improvement for LSND for almost all the variables for the 00 UTC runs. But practically no differences. For the 12 UTC run the impact is not clear and it looks like quality of 42-48 hour forecast is worse. Because it is only 10 days comparasion it is not possible to make definitive conclusions. Bigger impact of surface assimilation we expect in winter and spring, where the wrong analysis of snow coverage has a big impact on assignation of the right ground temperature.

Data exchange becomes very important, when the model resolution is getting higher

## 5. References

[1] Investigation of the use of non-GTS SYNOP reports in the ALADIN/HU 3D-VAR system - Sándor Kertész ,25th May, 2007

[2] Overview of the operational ALADIN variational data assimilation system - Sándor Kertész,17th January, 2007

#### 6. Acknowledgements

I would like to thank Gergely Bölöni (HMS) for the good support on my first ALADIN stay. My gratitude also belongs to HMS for a very good and friendly environment for work.

### **TECHNICAL NOTES**

Size of files and directories which were needed to experiment. (Maybe important for planing future experiments)

#### 4744956 /wrkarch/oper/assim/ExpMichal/lbc/assim/

- 1 run 98852 /wrkarch/oper/assim/ExpMichal/lbc/assim/2005/05/10/00/
  - 49424 /wrkarch/oper/assim/ExpMichal/lbc/assim/2005/05/10/00/PFE927HUN8\_20050510\_0000+000 49424 /wrkarch/oper/assim/ExpMichal/lbc/assim/2005/05/10/00/PFE927HUN8\_20050510\_0000+003

# 20165148 /wrkarch/oper/assim/ExpMichal/lbc/production/

- 840212 /wrkarch/oper/assim/ExpMichal/lbc/production/2005/05/10/00/
- 49424 /wrkarch/oper/assim/ExpMichal/lbc/production/2005/05/10/00/PFE927HUN8 20050510 0000+000
- 49424 /wrkarch/oper/assim/ExpMichal/lbc/production/2005/05/10/00/PFE927HUN8 20050510 0000+003
- ... 49424 /wrkarch/oper/assim/ExpMichal/lbc/production/2005/05/10/00/PFE927HUN8\_20050510\_0000+048

#### 6097584 /wrkarch/oper/assim/ExpMichal/LSHD/

- 148124 /wrkarch/oper/assim/ExpMichal/LSHD/assim.2005051000.tar.gz
- 139784 /wrkarch/oper/assim/ExpMichal/LSHD/assim.2005051006.tar.gz
- 159024 /wrkarch/oper/assim/ExpMichal/LSHD/assim.2005051012.tar.gz
- 123940 /wrkarch/oper/assim/ExpMichal/LSHD/assim.2005051018.tar.gz
- 154500 /wrkarch/oper/assim/ExpMichal/LSHD/assim.2005052000.tar.gz
- 119584 /wrkarch/oper/assim/ExpMichal/LSHD/assim.2005052006.tar.gz
- 159916 /wrkarch/oper/assim/ExpMichal/LSHD/assim.2005052012.tar.gz

#### 6100508 /wrkarch/oper/assim/ExpMichal/LSND/

- 148236 /wrkarch/oper/assim/ExpMichal/LSND/assim.2005051000.tar.gz
- 139856 /wrkarch/oper/assim/ExpMichal/LSND/assim.2005051006.tar.gz
- 159168 /wrkarch/oper/assim/ExpMichal/LSND/assim.2005051012.tar.gz
- 123984 /wrkarch/oper/assim/ExpMichal/LSND/assim.2005051018.tar.gz
- 154620 /wrkarch/oper/assim/ExpMichal/LSND/assim.2005052000.tar.gz
- 119600 /wrkarch/oper/assim/ExpMichal/LSND/assim.2005052006.tar.gz
- 159952 /wrkarch/oper/assim/ExpMichal/LSND/assim.2005052012.tar.gz

#### 3322756 /rtovol4/nestiak/archive/mn01/assim/monitor/LSHD/

- 96776 /rtovol4/nestiak/archive/mn01/assim/monitor/LSHD/2005/05/10/00/
  - 268 /rtovol4/nestiak/archive/mn01/assim/monitor/LSHD/2005/05/10/00/canNODE.001\_01.00
  - 1444 /rtovol4/nestiak/archive/mn01/assim/monitor/LSHD/2005/05/10/00/ccma\_db.tar.gz
- 404 /rtovol4/nestiak/archive/mn01/assim/monitor/LSHD/2005/05/10/00/ccma\_full.dat.gz
- 32892 /rtovol4/nestiak/archive/mn01/assim/monitor/LSHD/2005/05/10/00/ecma\_db\_var.tar.gz
- 9032 /rtovol4/nestiak/archive/mn01/assim/monitor/LSHD/2005/05/10/00/ecma\_full.dat.gz
- $204 \ /rtovol4/nestiak/archive/mn01/assim/monitor/LSHD/2005/05/10/00/morNODE.001\_01.00$
- 204 /rtovol4/nestiak/archive/mn01/assim/monitor/LSHD/2005/05/10/00/NODE.001\_01
- 49424 /rtovol4/nestiak/archive/mn01/assim/monitor/LSHD/2005/05/10/00/POS2
- 2096 /rtovol4/nestiak/archive/mn01/assim/monitor/LSHD/2005/05/10/00/scrNODE.001\_01.00
- 804 /rtovol4/nestiak/archive/mn01/assim/monitor/LSHD/2005/05/10/00/varNODE.001 01.00

#### /rtovol4/nestiak/archive/mn01/assim/monitor/LSND/

#### rundir & temp=>

/vol1/nestiak/mn01/assim/ 3375156 /vol1/nestiak/mn01/assim/guessdir/ /vol1/nestiak/mn01/assim/monitor /vol1/nestiak/mn01/assim/rundir /vol1/nestiak/mn01/prod/ /vol1/nestiak/mn01/prod/rundir

## Script (backbone info)

```
Run->Assim LSHD
     Init
     prepare OBSOUL.hms from /wrcharch/oper/assim/ExpMichal/LSHD/assim.${yy}${mm}$
{dd}${n time}.tar.gz for CANARI and 3dVar
     RunBatodb (OBSOUL.hms only with SYNOP and TEMP)
     RunCanari {
         f ansee=/wrkarch/oper/assim/ExpMichal/lbc/assim/${yy}/${mm}/${dd}/$
{n time}/PFE927HUN8 ${yy}${mm}${dd} ${n time}00+000
         ln -sf ${f ansea} arpeg
         f guess=/vol1/nestiak/mn01/assim/guessdir/guess.n date}n time}
         ln -sf ${f guess} guess
         cp
              ${f guess} mixed
         cp ${d NAM}/bleandsea.nml fort.4
         RunCommand -f blendsea
-c/home/aladin/pack/cy30t1 canari.01.ifort9 2B2.x.pack/bin/BLENDSUR
         mv mixed guess mixed
         ln -sf ${d CLIM}/HUNG8kmlin ${mm} ICMSHANALCLIM #IMP
         ln -sf ${d CLIM}/HUNG8kmlin ${i} ICMSHANALCLI2 #IMP
         #backround errors of surface variables
         ln -sf /vol1/nestiak/assim/guessdir/lisseff ${n date}${n time} ICMSHANALLISSE
         #-- fetching consts
         cp ${d NAM}/POLYNOMES ISBA
                                             fort.61
         #-- get the guess
         cp guess mixed ICMSHANALINIT && ln -sf ICMSHANALINIT
ELSCFANALALBC000
         #-- ODB settings for CANARI
         ODB CMA=ECMA
         ODB SRCPATH ECMA=${d DB}/ECMA.hms
         ODB DATAPATH ECMA=${d DB}/ECMA.hms
         IOASSIGN=${d DB}/ECMA.hms/IOASSIGN
         RunPoe -f 701 -n ${NBPROC} -c
/home/aladin/pack/cy30t1 canari.01.ifort9 2B2.x.pack/bin/ALDODB -c701 -vmeteo -eANAL -t1.
-maladin -ft0 -aeul
         cp NODE.001 01 canNODE.001 01.${n time}
         cp ICMSHANAL+0000 POS1
     }
     RunBatodb (OBSOUL.hms full)
     RunLamflagReduc
     RunScreening
     Run3DVAR
     RunCreateGuess
     Archive results
  ->Assim LSND
  ->Prod LSND
```