Pseudo-prognostic TKE scheme in ALARO

Jean-François Geleyn

ČHMÚ, on leave of absence from Meteo France

Filip Váňa

ČHMÚ – Czech hydrometeorological institute

Jure Cedilnik

ARSO – Environmental agency of Slovenia, Met. office

Martina Tudor

DHMZ - Croatian meteorological and hydrological service

Radmila Brožkova

ČHMÚ – Czech hydrometeorological institute

Bart Catry

Ghent University, Belgium

Outline of the talk

- TKE: what's in ALADIN
- pTKE: idea
- implementation
- ALARO results

TKE in ALADIN

- Louis type scheme:
 - only vertical diffusion
 - diagnosed values for turbulent coefficients
- current scheme is performing well for scales around 10km (we don't want to throw away that!)
- anti-fibrillation treatment

Pseudo what?!

- still compute diagnosed coefficients
- replace full TKE equation with a pseudo one (such that its solution will be the diagnosed coefficients)
- follow and extend the idea of Redelsperger, Mahé and Carlotti (2001)
- minor code changes, keep what is good

Full TKE going pseudo

```
full
          = advection
          + diffusion
          + mechanical or shear production/destruction
          + buoyancy production/consumption
          + viscous dissipation
pseudo
    ∂TKE
          = advection
          + diffusion
```

+ Newtonian relaxation towards something

Pseudo prognostic TKE equation

$$\frac{\partial \mathbf{E}}{\partial \mathbf{t}} = Adv(E) + \frac{1}{\rho} \frac{\partial}{\partial z} \rho K_E \frac{\partial E}{\partial z} + \frac{1}{\tau_{\varepsilon}} (\widetilde{E} - E)$$

Where do we get $K_E, \tau_{\varepsilon}, \widetilde{E}$ from?

And what do we relax towards? $\left(\widetilde{E}\right)$

Procedure (1)

$$\widetilde{K}_{m}, \widetilde{K}_{n} \Rightarrow \widetilde{K}_{*} \Rightarrow \widetilde{E}, K_{E}, \tau_{\varepsilon}$$

$$\frac{dE}{dt} = f(E, \widetilde{E}, K_{E}, \tau_{\varepsilon})$$

$$E \Rightarrow K_{*}$$

$$K_{*}, \widetilde{K}_{*}, \widetilde{K}_{m}, \widetilde{K}_{h} \Rightarrow K_{m}, K_{h}$$

RMC01

- match subgrid scale turbulence scheme ("full TKE scheme") and similarity laws (Monin-Obukhov) at surface
- extension of RMC01: extend this to the whole depth of the atmosphere (not just $l = \kappa z$)

Procedure (2)

$$\widetilde{K}_{*} = K_{n}^{1-\gamma} K_{m}^{\gamma} \Rightarrow \widetilde{E} = \left(\frac{\widetilde{K}_{*}}{v l_{m}}\right)^{2}$$

$$\widetilde{K}_{m}, \widetilde{K}_{n} \Rightarrow \widetilde{K}_{*} \Rightarrow \widetilde{E}, K_{E}, \tau_{\varepsilon}$$

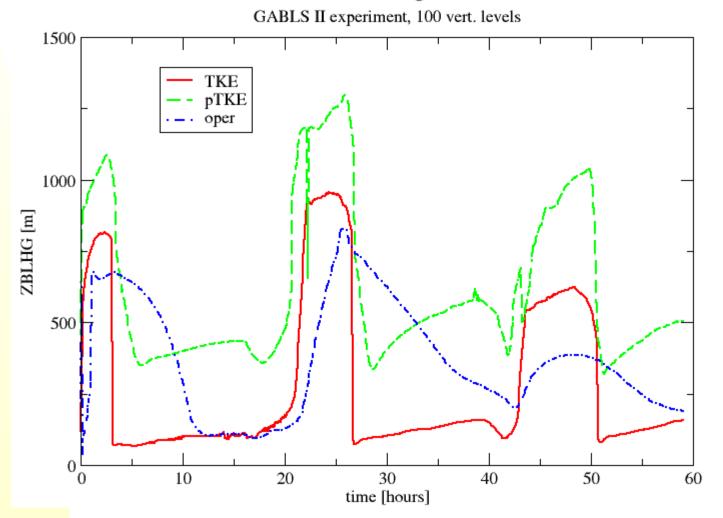
$$K_{E} = \frac{l_{m}}{v} \sqrt{E_{\gamma}}, \frac{1}{\tau_{\varepsilon}} = \frac{v^{3}}{l_{m}} \sqrt{E_{\gamma}}$$

$$\frac{dE}{dt} = f(E, \widetilde{E}, K_{E}, \tau_{\varepsilon})$$

$$E \Longrightarrow K_* \qquad K_* = \nu l_m \sqrt{E}$$

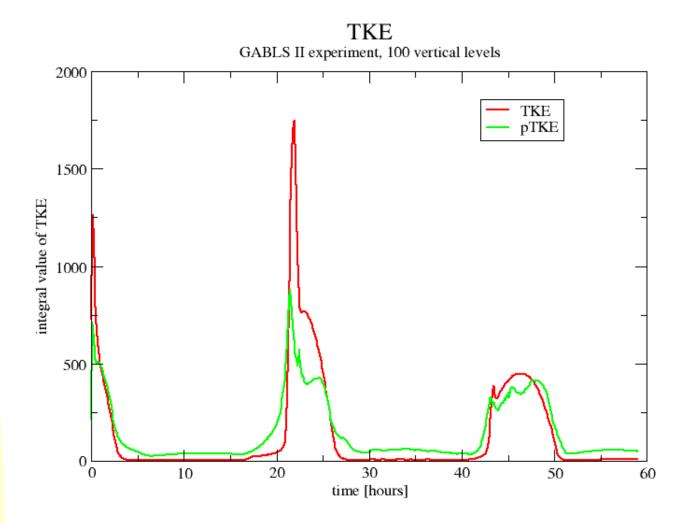
$$K_*, \widetilde{K}_*, \widetilde{K}_m, \widetilde{K}_h \Longrightarrow K_m = K_* \left(\frac{\widetilde{K}_m}{\widetilde{K}_*}\right), K_h = K_* \left(\frac{\widetilde{K}_h}{\widetilde{K}_*}\right)$$

The only tuning parameter: $v \approx 0.5$


Algorithmics

- three level stencil in the vertical for the Newtonian relaxation ($^{\tau_{\varepsilon}}$ s are on half levels) [a relaxation for a given layer is a weighted average of relaxations on neighbouring half levels]
- such a relaxation operator is compatible with the diffusion one – the matrix is diagonal dominant and the solution is linearly stable
- make sure that the diffusion part is dominant (no oscilating mode coming from

Results (1)

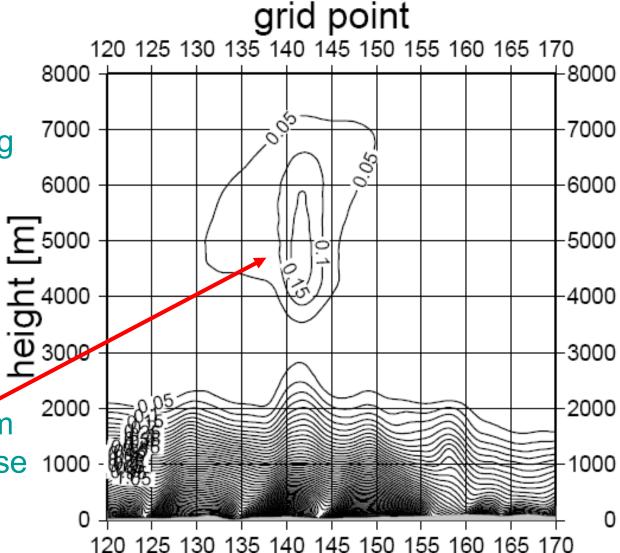

Academic test with 1D model: GABLS II experiment

PBL height

Results (2)

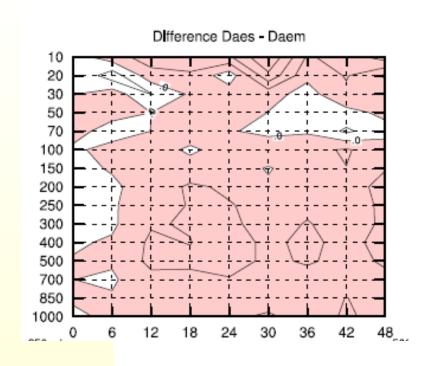
Academic test with 1D model: GABLS II experiment

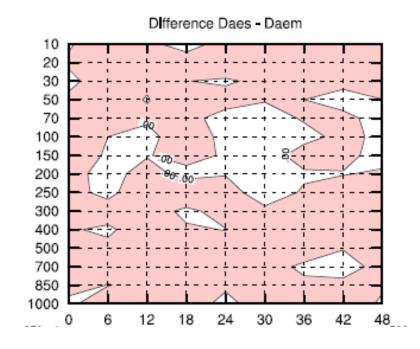
Results (3)


TKE vertical crosssection.

Situation with strong baroclinic zone.

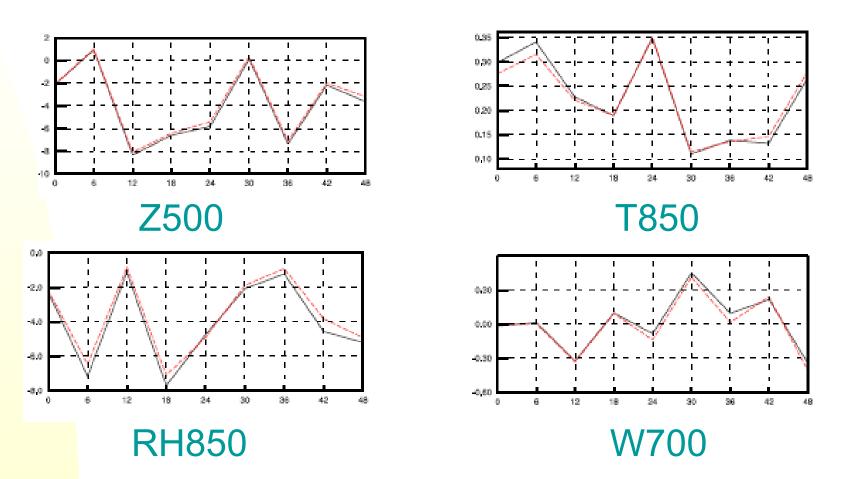
Local TKE maximum


where the tropopause 1000


folds down

Results (4)

Parallel suite scores, Dec 2005



RMSE difference maps
pTKE – Oper, vs TEMPs (8 days): left geopotential (m);
right: temperature (K). Negative values (color) -> e-suite
is better.

Results (5)

Parallel suite scores, Dec 2005

Bias: black solid: operational, red dashed: pTKE

Conclusions

- time stability for long time steps
- stable vertical staggering full level TKE values – no problems with SL advection
- anti-fibrilation treatment is very easily applicable
- Ks are on half levels suitable choice of Im fixes potential problems
- SLHD works well with precise SL interpolators (not necessary to use QM)
- pTKE is able to mimic fTKE provided one can compute differently, taking into account more precisely shear and buoyancy production/consumption and mixing lentgh specification as well (future work....)

Procedure (2)

$$\widetilde{K}_{m}, \widetilde{K}_{n} \Rightarrow \widetilde{K}_{*} \Rightarrow \widetilde{E}, K_{E}, \tau_{\varepsilon}$$

$$\widetilde{K}_{*} = R_{l}K_{n}^{1-\gamma}K_{m}^{\gamma} \Longrightarrow \widetilde{E} = \left(\frac{\widetilde{K}_{*}}{\nu l_{m}}\right)^{2}$$

$$K_{E} = \frac{l_{m}}{\nu}\sqrt{E_{?}}, \frac{1}{\tau_{*}} = \frac{\nu^{3}}{l_{m}}\sqrt{E_{?}}$$

$$\frac{dE}{dt} = f(E, \widetilde{E}, K_E, \tau_{\varepsilon})$$

$$E \Longrightarrow K_*$$

$$K_* = v l_m \sqrt{E}$$

$$K_*, \widetilde{K}_*, \widetilde{K}_m, \widetilde{K}_h \Rightarrow K_m, K_h$$

$$K_m = K_* \left(\frac{\widetilde{K}_m}{\widetilde{K}_*} \right), K_h = K_* \left(\frac{\widetilde{K}_h}{\widetilde{K}_*} \right)$$

The only tuning parameter: $v \approx 0.5$