New approaches to deep convection parametrisation and its binding to a microphysical scheme

Luc Gerard

June 7, 2005

Days's proposals

- 1. New facts
 - General context
 - Bad old habits
 - Back to basics by J.-M. Piriou
 - Choosing the right fluxes
 - How to share the moisture
 - New Microphysics and Convection scheme
- 2. Picture book : Surface charts, Cross sections.
- 3. Perspectives

Good old pans

- Resolved tendency

$$\frac{\partial \overline{\psi}}{\partial t} = -\overline{\mathbf{V}}\nabla\overline{\psi} - \overline{\omega}\frac{\partial \overline{\psi}}{\partial p} - \frac{\partial \overline{u'\psi'}}{\partial x} - \frac{\partial \overline{v'\psi'}}{\partial y} - \frac{\partial \overline{\omega'\psi'}}{\partial p} + S_{\psi}$$
(1)

Good old pans

- Resolved tendency

$$\frac{\partial \overline{\psi}}{\partial t} = -\overline{\mathbf{V}}\nabla\overline{\psi} - \overline{\omega}\frac{\partial \overline{\psi}}{\partial p} - \frac{\partial \overline{u'\psi'}}{\partial x} - \frac{\partial \overline{v'\psi'}}{\partial y} - \frac{\partial \overline{\omega'\psi'}}{\partial p} + S_{\psi}$$
(1)

$$\left(\frac{\partial\overline{\psi}}{\partial t}\right)_{\text{subgrid}} = \text{source} - \frac{\partial\overline{\omega'\psi'}}{\partial p} = \left(\frac{\partial\overline{\psi}}{\partial t}\right)_{\text{conv}} + \left(\frac{\partial\overline{\psi}}{\partial t}\right)_{\text{vert diff}} + \text{other} \quad (2)$$

Good old pans

- Resolved tendency

$$\frac{\partial \overline{\psi}}{\partial t} = -\overline{\mathbf{V}}\nabla\overline{\psi} - \overline{\omega}\frac{\partial \overline{\psi}}{\partial p} - \frac{\partial \overline{u'\psi'}}{\partial x} - \frac{\partial \overline{v'\psi'}}{\partial y} - \frac{\partial \overline{\omega'\psi'}}{\partial p} + S_{\psi}$$
(1)

$$\left(\frac{\partial\overline{\psi}}{\partial t}\right)_{\text{subgrid}} = \text{source} - \frac{\partial\overline{\omega'\psi'}}{\partial p} = \left(\frac{\partial\overline{\psi}}{\partial t}\right)_{\text{conv}} + \left(\frac{\partial\overline{\psi}}{\partial t}\right)_{\text{vert diff}} + \text{other} \quad (2)$$

– Mass flux approach :

$$\overline{\psi'\omega'} = \omega^{\stackrel{\wedge}{*}}(\psi_u - \overline{\psi}) + \omega^{\stackrel{\vee}{*}}(\psi_d - \overline{\psi})$$
(3)

- Resolved tendency

$$\left(\frac{\partial \overline{\psi}}{\partial t}\right)_{\text{subgrid}} = \text{source} - \frac{\partial \overline{\omega' \psi'}}{\partial p}$$

L. Gerard, Aladin Workshop, June 2005

- Resolved tendency
- $\left(\frac{\partial \overline{\psi}}{\partial t}\right)_{\text{subgrid}} = \text{source} \frac{\partial \overline{\omega' \psi'}}{\partial p}$

– Bougeault :

- Resolved tendency
- $\left(\frac{\partial \overline{\psi}}{\partial t}\right)_{\text{subgrid}} = \text{source} \frac{\partial \overline{\omega' \psi'}}{\partial p}$

– Bougeault :

- Resolved tendency
- $\left(\frac{\partial \overline{\psi}}{\partial t}\right)_{\text{subgrid}} = \text{source} \frac{\partial \overline{\omega' \psi'}}{\partial p}$

– Bougeault :

more terms with significant mesh fractions ! approximations, additional hypotheses

- Resolved tendency
- $\left(\frac{\partial \overline{\psi}}{\partial t}\right)_{\text{subgrid}} = \text{source} \frac{\partial \overline{\omega' \psi'}}{\partial p}$

– Bougeault :

more terms with significant mesh fractions ! approximations, additional hypotheses

prescribed entrainment conflicts with local mass budget using the calculated detrainment

- Resolved tendency
- $\left(\frac{\partial \overline{\psi}}{\partial t}\right)_{\text{subgrid}} = \text{source} \frac{\partial \overline{\omega' \psi'}}{\partial p}$

– Bougeault :

more terms with significant mesh fractions ! approximations, additional hypotheses AARGHH !

prescribed entrainment conflicts with local mass budget using the calculated detrainment

- Resolved tendency

$$\left(\frac{\partial \overline{\psi}}{\partial t}\right)_{\text{subgrid}} = \text{source} - \frac{\partial \overline{\omega' \psi'}}{\partial p}$$

L. Gerard, Aladin Workshop, June 2005

- Resolved tendency

$$\left(\frac{\partial \overline{\psi}}{\partial t}\right)_{\text{subgrid}} = \text{source} - \frac{\partial \overline{\omega' \psi'}}{\partial p}$$

– Jean-Marcel : (3)

$$-\frac{\partial\overline{\psi'\omega'}}{\partial p} = -\frac{\partial\omega^{\hat{\ast}}(\psi_u - \overline{\psi})}{\partial p} - \frac{\partial\omega^{\hat{\ast}}(\psi_d - \overline{\psi})}{\partial p}$$
(5)

- Resolved tendency

$$\left(\frac{\partial \overline{\psi}}{\partial t}\right)_{\text{subgrid}} = \text{source} - \frac{\partial \overline{\omega' \psi'}}{\partial p}$$

– Jean-Marcel : (3)

$$-\frac{\partial \overline{\psi'\omega'}}{\partial p} = -\frac{\partial \omega^{\stackrel{\wedge}{*}}(\psi_u - \overline{\psi})}{\partial p} - \frac{\partial \omega^{\stackrel{\vee}{*}}(\psi_d - \overline{\psi})}{\partial p}$$
(5)

 \implies convective transport and condensation

- Resolved tendency

$$\left(\frac{\partial \overline{\psi}}{\partial t}\right)_{\text{subgrid}} = \text{source} - \frac{\partial \overline{\omega' \psi'}}{\partial p}$$

– Jean-Marcel : (3)

$$-\frac{\partial\overline{\psi'\omega'}}{\partial p} = -\frac{\partial\omega^{\stackrel{\wedge}{*}}(\psi_u - \overline{\psi})}{\partial p} - \frac{\partial\omega^{\stackrel{\vee}{*}}(\psi_d - \overline{\psi})}{\partial p}$$
(5)

 \implies convective transport and condensation

... I just need to compute the entraining ascent!

- Resolved tendency $\left(\frac{\partial \overline{\psi}}{\partial t}\right)_{\text{subgrid}} = \text{source} - \frac{\partial \overline{\omega' \psi'}}{\partial p}$ - Jean-Marcel : (3)

$$-\frac{\partial \overline{\psi'\omega'}}{\partial p} = -\frac{\partial \omega^{\stackrel{\wedge}{*}}(\psi_u - \overline{\psi})}{\partial p} - \frac{\partial \omega^{\stackrel{\vee}{*}}(\psi_d - \overline{\psi})}{\partial p}$$
(5)

⇒convective transport and condensation

... I just need to compute the entraining ascent!

- Local budget

$$(\omega^{\stackrel{\wedge}{*}}, E_u, \Delta q_{ca}, q_{cu}) \longrightarrow \sigma_D \cdot q_{cD} \longrightarrow \sigma_D$$

L. Gerard, Aladin Workshop, June 2005

 No storage for evaporation fluxes :

$$F_{sv} = F_{is} - \mathcal{P}_s - F_{sr}$$
$$F_{rv} = F_{\ell r} - \mathcal{P}_r + F_{sr}$$

L. Gerard, Aladin Workshop, June 2005

 No storage for evaporation fluxes :

$$F_{sv} = F_{is} - \mathcal{P}_s - F_{sr}$$
$$F_{rv} = F_{\ell r} - \mathcal{P}_r + F_{sr}$$

– No storage for F_{sr} : $\mathcal{P}_s \to \mathcal{P}_r$

 No storage for evaporation fluxes :

$$F_{sv} = F_{is} - \mathcal{P}_s - F_{sr}$$
$$F_{rv} = F_{\ell r} - \mathcal{P}_r + F_{sr}$$

- No storage for F_{sr} : $\mathcal{P}_s \to \mathcal{P}_r$
- All phase change heat fluxes computed afterwards.

 No storage for evaporation fluxes :

$$\overline{q_{t9}} = \overline{q_{v9}} + \overline{q_{\ell9}} + \overline{q_{i9}}$$

L. Gerard, Aladin Workshop, June 2005

Deep Convection

L. Gerard, Aladin Workshop, June 2005

Deep Convection
$$\rightarrow \mathcal{P}_{cu}$$

L. Gerard, Aladin Workshop, June 2005

$$\overline{q_{t9}} = \overline{q_{v9}} + \overline{q_{\ell9}} + \overline{q_{i9}}$$

$$\downarrow$$

$$q_{sat}(\overline{T_9}) \longrightarrow \overline{\text{resolved condensation}} \rightarrow \mathcal{P}_{st}$$

$$\mathsf{modulate?} \qquad \downarrow$$

$$MOCON \longrightarrow \overline{\text{Deep Convection}} \rightarrow \mathcal{P}_{cu}$$

L. Gerard, Aladin Workshop, June 2005

$$\overline{q_{t9}} = \overline{q_{v9}} + \overline{q_{\ell9}} + \overline{q_{i9}}$$

$$\downarrow$$

$$q_{sat}(\overline{T_9}) \longrightarrow \boxed{\text{resolved condensation}} \longrightarrow F_{vi}^0, F_{v\ell}^0$$

$$\overline{q_{v0}}, \overline{q_{\ell0}}, \overline{q_{i0}}, \overline{T_0} \quad \text{and} \quad f_{stra}$$

$$\downarrow$$

$$MOCON \longrightarrow \boxed{\text{Deep Convection}} \longrightarrow F_{vi}^1, F_{v\ell}^1, J_v^{cu}, J_i^{cu}, J_\ell^{cu}$$

$$\overline{q_{v1}}, \overline{q_{\ell1}}, \overline{q_{i1}}, \overline{T_1} \quad \text{and} \quad f = \max(f_{stra}, \sigma_D)$$

$$\downarrow$$

$$\boxed{\text{Autoconversion}}$$

(Fix negative advected) $\longrightarrow J_{\ell}^{td}, J_i^{td}$

L. Gerard, Aladin Workshop, June 2005

(Fix negative advected) $\longrightarrow J_{\ell}^{td}, J_{i}^{td}$ (Phase adjust) $\longrightarrow F_{\ell i}$

L. Gerard, Aladin Workshop, June 2005

 $(n_L, n_M, n_H, n_T, n_C)$

$$\begin{array}{c} (\mathsf{Fix negative advected}) \longrightarrow J_{\ell}^{td}, \ J_{i}^{td} \\ (\mathsf{Phase adjust}) \longrightarrow F_{\ell i} \\ f^{*} \longleftarrow \ f_{\mathrm{cu}}^{-}, \ f_{\mathrm{stra}} \longleftarrow \boxed{\mathsf{Resolved condensation}} \longrightarrow F_{vi}, \ F_{v\ell} \\ \downarrow \qquad & \mathsf{MOCON} \longrightarrow \\ f \leftarrow f_{\mathrm{stra}}, \sigma_{D} \longleftarrow \boxed{\mathsf{Deep convection}} \longrightarrow \frac{F_{vi}, \ F_{v\ell}, \ J_{\ell}^{td}, \ J_{i}^{td}, \\ J_{v}^{cu}, \ J_{i}^{cu}, \ J_{\ell}^{cu}, \ J_{\ell}^{cu}, \ J_{s}^{cu}, \ J_{V}^{cu} \\ (n_{L}, n_{M}, n_{H}, n_{T}, n_{C}) \qquad \boxed{\mathsf{Aucoconversion}} \longrightarrow F_{is}, \ F_{\ell r}, \ F_{\ell i} \\ \boxed{\mathsf{Precipitation}} \longrightarrow \mathcal{P}_{r}, \ \mathcal{P}_{s}, \ F_{\ell i}, \alpha_{\mathrm{snow}} \\ (\mathsf{Phase adjust}) \longrightarrow F_{\ell i} \\ \boxed{\mathsf{Downdraught}} \longrightarrow \frac{\mathcal{P}_{r}, \ \mathcal{P}_{s}, \ J_{\ell}^{td}, \ J_{i}^{td}, \\ J_{v}^{cu}, \ J_{\ell}^{cu}, \ J_{\ell}^{cu}, \ J_{s}^{cu}, \ J_{V}^{cu} \\ \end{bmatrix}$$

IRM-KMI

Saturday 14 August 1999 Oz A1 Forecast t+ 21 VT: Saturday LAST hour precipitation - Mean Sea Level Pressure (hPa) 14 August 1999 21z

Saturday 14 August 1999 Oz A1 Forecast t+ 22 VT: Saturday LAST hour precipitation – Mean Sea Level Pressure (hPo) 14 August 1999 22z

1000. 1001 1002 1001 00: 10_{0.} 1005 1006 10₀.

9.5

8.5

7.5

6.5

5.5

The Tournai case

Saturday 14 August 1999 0z AD Forecast t+ 22 VT: Saturday 14 August 1999 22z LAST hour precipitation – Mean Sea Level Pressure (hPa)

Saturday 14 August 1999 Oz AO Forecast t+ 20 VT: Saturday 14 August 1999 20z LAST hour precipitation - Mean Sea Level Pressure (hPa)

Saturday 14 August 1999 Oz AO Forecast t+ 21 VT: Saturday LAST hour precipitation - Mean Sea Level Pressure (hPa) 14 August 1999 21z

21.41571

18.0

16.0

14.5

13.5

12.5

11.5

10.5

9.5

8.5

7.5

6.5

5.5

4.5

3.5

2.5

1.5

The Tournai case

14 August 1999 18z

Saturday 14 August 1999 Oz A1 Forecast t+ 17 VT: Saturday 14 August 1999 17z LAST hour precipitation - Mean Sea Level Pressure (hPa)

Saturday 14 August 1999 Oz A1 Forecast t+ 19 VT: Saturday LAST hour precipitation – Mean Sea Level Pressure (hPa) 14 August 1999 19z

14 August 1999 20z

Saturday 14 August 1999 Oz A1 Forecast t+ 21 VT: Saturday LAST hour precipitation - Mean Sea Level Pressure (hPa) 14 August 1999 21z

Saturday 14 August 1999 Oz A1 Forecast t+ 22 VT: Saturday LAST hour precipitation – Mean Sea Level Pressure (hPa) 14 August 1999 22z

IRM-KMI

Convection

36.0

18.0

6.0

14.5

12.5

11.5

10.5

9.5

8.5

7.5

6.5

5.5

4.5

3.5 2.5

1.5

12.93564

Saturday 14 August 1999 Oz A4a Forecast t+ 21 VT: Saturday LAST hour precipitation – Mean Sea Level Pressure (hPa) 14 August 1999 21z

Saturday 14 August 1999 Oz A4a Forecast t+ 19 VT; Saturday 14 August 1999 19z LAST hour precipitation – Mean Sea Level Pressure (hPa)

Saturday 14 August 1999 Oz A4a Forecast t+ 22 VT: Saturday 14 August 1999 22z LAST hour precipitation - Mean Sea Level Pressure (hPa)

` ⁹99

00

1005

100.-

100

The Tournai case

14 August 1999 18z

The Tournai case

14 August 1999 19z

Saturday 14 August 1999 Oz A4a Forecast t+ 18 VT: Saturday LAST hour precipitation - Mean Sea Level Pressure (hPa) 14 August 1999 18z

14 August 1999 21z Saturday 14 August 1999 Oz A4a Forecast t+ 21 VT: Saturday LAST hour precipitation - Mean Sea Level Pressure (hPa)

updraught vertical cross sections

updraught vertical cross sections

downdraught vertical cross sections

Finally joining Timbuktu?

- Advantages : light calculation, coherent integration of convection and microphysics, seems ready for grey zone.
- Further tests / tunings : varying the resolution, systematic validation
- Refine cloud profile calculation, prognostic entrainment, varying mesh fraction, microphysics.