Improving the computation of screen level fields (temperature, moisture)

Ján Mašek, Martin Dian

RC LACE Alaro working days

CHMI, SHMÚ

jan.masek@chmi.cz oknitram@gmail.com

September 13, 2016

Ján Mašek, Martin Dian (CHMI, SHMÚ) The computation of screen level fields Septe

September 13, 2016 1 / 11

Introduction

- At current ALARO res. the height of the lowest model level z_L is about 10m above surface, so T_{2m} (RH_{2m}) must be obtained by interpolation between z_L and surface.
- In 1988 J.F. Geleyn proposed interpolation method, but in strongly stable conditions has cold bias.
- In 2009 L. Kullmann proposed more realistic formula based on Arctic Ocean Experiment (warm bias).
- End of 2014, provisional fix was implemented at CHMI based on mix of Geleyn and Kullmann (oscillations).

The interpolation technique: Monin-Obukhov theory

- Both interpolations are based on Monin-Obukhov similarity theory
- Monin-Obukhov equations are:

$$\begin{aligned} \frac{\partial u}{\partial z} &= \frac{u_*}{\kappa(z + z_{0D})} \varphi_D \Big(\frac{z + z_{0D}}{L} \Big), \\ \frac{\partial s}{\partial z} &= \frac{s_*}{\kappa(z + z_{0H})} \varphi_H \Big(\frac{z + z_{0H}}{L} \Big), \\ L &= \frac{\tilde{s}u_*^2}{g\kappa s_*}, \end{aligned}$$

- No analytic solution of these eq. for arbitrary φ_D, φ_H .
- It leads to cost expensive iterative numerical computations.

Ján Mašek, Martin Dian (CHMI, SHMÚ) The computation of screen level fields

September 13, 2016

Stability functions in stable case

• 1988 Geleyn

 $\varphi_H(\xi) = 1 + \alpha_G \xi$, $\int dz \implies s_G(z)$, where α_G is elimination parameter determined by consistancy conditions at z_L , Oversimplified $\varphi_H(\xi) \implies$ cold bias in strongly stable conditions (clear-sky nights) • 2009 Kullmann motivited by experiments: $\varphi_H(\xi) = 1 + a_K \frac{\alpha_K \xi}{1 + \alpha_K \xi}$,

• 2009 Kullmann motivited by experiments. $\varphi_H(\zeta) = 1 + a_K \frac{1}{1 + \alpha_K \xi}$, $\int dz \implies s_K(z, a_K), \alpha_K$ is elimination parameter. Experiments recommended $a_K \approx 5$, but Kullmann set this as tuning parameter. (Warm bias also for big a_K)

• 2014 CHMI mixed solution $s(z)_{mix} = w \cdot s_G(z) + (1 - w) \cdot s_K(z)$ where $w = w(C_H)$ function of heat surface exchange coefficient - getting from model. Oscillate rapidly.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = うのの

- We have found that also pure Kullmann solution oscillated
- Problem is also in strongly stable conditions
- We proposed $\varphi_H(\xi) = 1 + \alpha \frac{\xi}{1+a\xi}$ instead of Kullmann $\varphi_H(\xi) = 1 + a_K \frac{\alpha_K \xi}{1+\alpha_K \xi}$
- Difference: elimination parameter α is before fraction. Tuning parameter *a* is in denominator.

Results: Prague 23th December 2015 from 00UTC

- To detect oscillations we needed one run (not statistical sample)
- Clear sky conditions (stable case)
- Obs temperature lying between surface and at the lowest model level
- Our new interpolation is smooth for all a = 1, a = 10 a = 1000 and without any oscillations

Temperatures for Prague 23th December 2015 from 00UTC

Results: Spatial behavior 24th December 2015

- We compared also spatial behavior
- We subtracted *T*_{2*m*} for forecast on 2UTC and 3UTC
- Temp deviation more then
 3 4K in neighboring gridboxes
- Our interpolation is also without oscillations

Results: Temperature profiles Prague 24th December 2015

- weak stable conditions (near neutral) Geleyn (red) Kullmann (blue) profiles similar
- stronger stable conditions Kullmann becomes vertically constant with a sharp gradient near the surface.
- Our solution is without this undesirable gradient

25hours after 0UTC near neutral conditions

31hours after 0UTC strong stable conditions

Results VERAL (stations 23-24th December 2015)

- Robust verification containing other stations is provided by VERAL scores
- Geleyn solution is coldest
- Reference mixed is nearly unbiased
- New solution a = 1 slighty colder
- Relative humidity lines are in reversed order

Green: Pure Geleyn, Black: Mixed reference, Red: New solution a = 1, Blue: New solution a = 10

- In new modset of cy40t1bf05, the interpolation routine ACTKECLS is called only from TOUCANS, i.e. when there is LCOEFKSURF=.T. in namelist &NAMPHY.
- New interpolation is activated by setting: &NAMPHY1 LCLS_HS=.T., (default .F.) ACLS_HS=1., (default 1,for reduce cold bias recommended 1 \leq ACLS_HS \leq 3. Values \gtrsim 3 can shift bias artificially, because $T(z_L)$ and \tilde{T} can be shifted by biased model.)

Ján Mašek, Martin Dian (CHMI, SHMÚ) The computation of screen level fields September 13, 2016 11 / 11

(本間) (本語) (本語)