The non-saturated downdraught in Alaro-1

Luc Gerard

12 September 2016

Why downdraught is subsaturated

Rain evaporation moistens and cools the downdraught parcel \Rightarrow negative buoyancy

Why downdraught is subsaturated

Rain evaporation moistens and cools the downdraught parcel \Rightarrow negative buoyancy

Why downdraught is subsaturated

Rain evaporation moistens and cools the downdraught parcel \Rightarrow negative buoyancy

Starting point

- Süd and Walker (1993): around level of minimim $\theta_{\text {eq }}$ close to 650 hPa , anyway below 500 hPa : higher up, mostly driven by water loading, with $\Gamma_{e} \approx \Gamma_{\text {adiab }}$.
- Start with saturated state $(\check{T}, \check{q})=\left(\overline{T_{w}}, \overline{q_{w}}\right)$ (environment blue point).

Unsaturated descent segments

- Betts and Silva Dias (1979): curve of constant $\theta_{\text {eq }}$ but unsaturated. \Rightarrow const $\check{h}_{*}=\check{s}_{*}+L \check{q}_{*}, s=c_{p} T+\phi \quad$ (h^{*} not affected by de-saturation)

Unsaturated descent segments

- Betts and Silva Dias (1979): curve of constant $\theta_{\text {eq }}$ but unsaturated.

$$
\begin{array}{rlr}
\Rightarrow \text { const } \check{h}_{*} & =\check{s}_{*}+L \check{q}_{*}, s=c_{p} T+\phi & \text { (} h^{*} \text { not affected by de-saturation) } \\
& \frac{d \check{q}}{d p}=\frac{\check{q}_{*}-\check{q}}{\Pi_{E}}+\frac{\tilde{q}-\check{q}}{\mathcal{L}_{e}} & \frac{d \check{s}}{d p}=\frac{\check{s}_{*}-\check{s}}{\Pi_{E}}+\frac{\tilde{s}-\check{s}}{\mathcal{L}_{e}}
\end{array}
$$

Unsaturated descent segments

- Betts and Silva Dias (1979): curve of constant $\theta_{\text {eq }}$ but unsaturated.

$$
\begin{aligned}
\Rightarrow \text { const } \check{h}_{*}=\check{s}_{*}+L \check{q}_{*}, s=c_{p} T+\phi & \text { (} h^{*} \text { not affected by de-saturation) } \\
& \frac{d \check{q}}{d p}=\frac{\check{q}_{*}-\check{q}}{\Pi_{E}}+\frac{\tilde{q}-\check{q}}{\mathcal{L}_{e}}
\end{aligned} \quad \frac{d \check{s}}{d p}=\frac{\check{s}_{*}-\check{s}}{\Pi_{E}}+\frac{\tilde{s}-\check{s}}{\mathcal{L}_{e}}
$$

- Pressure scales for evaporation and mixing

$$
\Pi_{e}=\frac{\check{\omega}}{4 \pi D F}=\frac{\check{\omega}}{\mathcal{F}(\mathcal{P})}, \quad \quad \mathcal{L}_{e}=\left[\frac{1}{\check{M}} \frac{d \check{M}}{d p}\right]^{-1}
$$

Unsaturated descent segments

- Betts and Silva Dias (1979): curve of constant $\theta_{\text {eq }}$ but unsaturated.

$$
\begin{aligned}
\Rightarrow \text { const } \breve{h}_{*} & =\check{s}_{*}+L \check{q}_{*}, s=c_{p} T+\phi \\
& \frac{d \check{q}}{d p}=\frac{\check{q}_{*}-\check{q}}{\Pi_{E}}+\frac{\tilde{q}-\check{q}}{\mathcal{L}_{e}}
\end{aligned} \quad \frac{d \check{s}}{d p}=\frac{\check{s}_{*}-\check{s}}{\Pi_{E}}+\frac{\tilde{s}-\check{s}}{\mathcal{L}_{e}}
$$

- Pressure scales for evaporation and mixing

$$
\Pi_{e}=\frac{\check{\omega}}{4 \pi D F}=\frac{\check{\omega}}{\mathcal{F}(\mathcal{P})}, \quad \quad \mathcal{L}_{e}=\left[\frac{1}{\check{M}} \frac{d \check{M}}{d p}\right]^{-1}
$$

- Entrainment/mixing implies to change the reference $\theta_{\text {eq }}$ or \check{h}_{*} for each segment: $\left(\check{s}_{*}, \check{q}_{*}\right)=$ values from saturated descent with mixing.

Unsaturated descent segments

- Betts and Silva Dias (1979): curve of constant $\theta_{\text {eq }}$ but unsaturated.

$$
\begin{aligned}
\Rightarrow \text { const } \breve{h}_{*} & =\check{s}_{*}+L \check{q}_{*}, s=c_{p} T+\phi \\
& \frac{d \check{q}}{d p}=\frac{\check{q}_{*}-\check{q}}{\Pi_{E}}+\frac{\tilde{q}-\check{q}}{\mathcal{L}_{e}}
\end{aligned} \quad \frac{d \check{s}}{d p}=\frac{\check{s}_{*}-\check{s}}{\Pi_{E}}+\frac{\tilde{s}-\check{s}}{\mathcal{L}_{e}}
$$

- Pressure scales for evaporation and mixing

$$
\Pi_{e}=\frac{\check{\omega}}{4 \pi D F}=\frac{\check{\omega}}{\mathcal{F}(\mathcal{P})}, \quad \quad \mathcal{L}_{e}=\left[\frac{1}{\check{M}} \frac{d \check{M}}{d p}\right]^{-1}
$$

- Entrainment/mixing implies to change the reference $\theta_{\text {eq }}$ or \check{h}_{*} for each segment: $\left(\breve{s}_{*}, \check{q}_{*}\right)=$ values from saturated descent with mixing.
- prognostic velocity $\check{\omega}:$ inertia \leftrightarrow drag \leftrightarrow buoyancy $\propto\left(\frac{1}{T_{v}}-\frac{1}{T_{v}}\right)$,

$$
\begin{array}{cc}
\check{T}_{v}=\check{T}\left(1-q_{r}-q_{s}-\nu \check{q}\right), & \overline{T_{v}}=\bar{T}\left(1-\overline{q_{c}}-\nu \bar{q}\right) \\
\frac{1}{\check{T}_{v}} \approx \frac{(c \check{\omega}+d)}{(a \check{\omega}+b)}, & a, b, c, d>0
\end{array}
$$

Water transport to the downdraft

$$
\Pi_{e}=\frac{\breve{\omega}}{4 \pi D F}=\frac{\breve{\omega}}{\mathcal{F}(\mathcal{P})}
$$

Diffusion coefficient $D \approx 2 \cdot 10^{-5} \mathrm{~m}^{2} \mathrm{~s}^{-1}$

$$
\begin{array}{cc}
F=\int_{0}^{\infty} n(r) C_{v}(r) r d r, & n(r)=n_{0}(2 r)^{\mu} \exp \left(-2 b \mathcal{P}^{-\beta} r\right), \\
C_{v}(r)=1+0.22 \sqrt{\mathcal{R} e}, \quad \mathcal{R} e=\frac{2 \rho r V}{\eta}, \quad V \approx \sqrt{v_{T}^{2}(r)+u^{2}}
\end{array}
$$

Increased ventilation in detrainment part: $u \sim-\frac{r_{d}}{2} \frac{\Delta \omega_{d}}{\Delta p}$
Fitting a curve, $\operatorname{gddfp}[1: 3]=\left(k_{F 1}, \beta_{F}, k_{F 2}\right)$:

$$
\mathcal{F}(\mathcal{P})=k_{F} \mathcal{P}^{\beta_{F}}, \quad k_{F}=k_{F 0}\left(1+k_{F 1} \sqrt{-\frac{\triangle \omega_{d}}{\triangle p}}\right)
$$

Non saturated downdraught profile

LNSDO $=\mathrm{T}$, Icddevpro=F

- Reference saturated segment ($\left.\check{q}^{*}, \check{s}^{*}\right)$

Non saturated downdraught profile

LNSDO $=\mathrm{T}$, Icddevpro=F

- Reference saturated segment $\left(\check{q}^{*}, \check{s}^{*}\right)$
- Actual downdraught properties ($\check{q}, \check{s})$ depending on $\check{\omega}$, mixing and mesh fraction + account for precipitation inhomogeneity: gddinhom

Non saturated downdraught profile

LNSDO $=\mathrm{T}$, Icddevpro=F

- Reference saturated segment $\left(\check{q}^{*}, \check{s}^{*}\right)$
- Actual downdraught properties (\check{q}, \check{s}) depending on $\check{\omega}$, mixing and mesh fraction + account for precipitation inhomogeneity: gddinhom cooling by evaporation and melting computed in microphysics is larger at downdraught location than in the rest of $\sigma_{\mathcal{P}}$

$$
\delta T_{d}=G \delta T_{e}=\frac{G}{1+\sigma_{d}(G-1)}\left[-\frac{g \triangle t}{c_{p}} \frac{\triangle F_{h \mathcal{P}}}{\triangle p}\right], \quad G=G_{0}\left(1-\sigma_{d}\right)+1
$$

Non saturated downdraught profile

LNSDO $=\mathrm{T}$, Icddevpro=F

- Reference saturated segment $\left(\check{q}^{*}, \check{s}^{*}\right)$
- Actual downdraught properties ($\check{q}, \check{s})$ depending on $\check{\omega}$, mixing and mesh fraction + account for precipitation inhomogeneity: gddinhom
- Compute a, b, c, d for $1 / \check{T}_{v}$

Non saturated downdraught profile

LNSDO $=\mathrm{T}$, Icddevpro=F

- Reference saturated segment ($\left.\check{q}^{*}, \check{s}^{*}\right)$
- Actual downdraught properties (\check{q}, \check{s}) depending on $\check{\omega}$, mixing and mesh fraction + account for precipitation inhomogeneity: gddinhom
- Compute a, b, c, d for $1 / \check{T}_{v}$
- Prognostic vertical velocity ω_{d} computed together with the descent (3rd degree equation) (tentrd, tddfr, gddalbu). Braking towards surface (gddbeta, gdddp).

$$
\begin{aligned}
\frac{\partial \check{\omega}}{\partial t} & =-k\left(\Lambda_{w}+k \frac{\text { gdddp }}{\left(p_{s}-p^{\prime}\right)^{\beta}}\right) \check{\omega}^{2}-(\check{\omega}-\bar{\omega}) \frac{\partial \check{\omega}}{\partial p}-\frac{\alpha_{b} g^{2}}{R_{a}} p\left(\frac{1}{\overline{T_{v}}}-\frac{(c \check{\omega}+d)}{(a \check{\omega}+b)}\right) \\
k & \sim 1-\frac{\bar{\omega}}{\breve{\omega}}, \quad \Lambda_{w}=\frac{1}{\triangle p}\left[\frac{-\triangle \phi}{k}\left(\lambda_{d}+\frac{\mathcal{K}_{d d}}{g}\right)+\delta_{o e}\left(\frac{\triangle \check{\omega}}{\check{\omega}}+\frac{\triangle k}{k}\right)\right]
\end{aligned}
$$

Non saturated downdraught profile

LNSDO $=\mathrm{T}$, Icddevpro=F

- Reference saturated segment ($\left.\check{q}^{*}, \check{s}^{*}\right)$
- Actual downdraught properties (\check{q}, \check{s}) depending on $\check{\omega}$, mixing and mesh fraction + account for precipitation inhomogeneity: gddinhom
- Compute a, b, c, d for $1 / \check{T}_{v}$
- Prognostic vertical velocity ω_{d} computed together with the descent (3rd degree equation) (tentrd, tddfr, gddalbu). Braking towards surface (gddbeta, gdddp).

$$
\begin{aligned}
\frac{\partial \breve{\omega}}{\partial t} & =-k\left(\Lambda_{w}+k \frac{\text { gdddp }}{\left(p_{s}-p^{\prime}\right)^{\beta}}\right) \breve{\omega}^{2}-(\check{\omega}-\bar{\omega}) \frac{\partial \check{\omega}}{\partial p}-\frac{\alpha_{b} g^{2}}{R_{a}} p\left(\frac{1}{\overline{T_{v}}}-\frac{(c \check{\omega}+d)}{(a \check{\omega}+b)}\right) \\
k & \sim 1-\frac{\bar{\omega}}{\breve{\omega}}, \quad \Lambda_{w}=\frac{1}{\triangle p}\left[\frac{-\triangle \phi}{k}\left(\lambda_{d}+\frac{\mathcal{K}_{d d}}{g}\right)+\delta_{o e}\left(\frac{\triangle \check{\omega}}{\check{\omega}}+\frac{\triangle k}{k}\right)\right]
\end{aligned}
$$

- Compatibility with CSD approach when $\bar{\omega}>0($ Icddcsd $=T): k<1$.

Non saturated downdraught 'closure'

σ_{d} first guess at the top, re-adjusted along the descent

Non saturated downdraught 'closure'

σ_{d} first guess at the top, re-adjusted along the descent

- $\sigma_{d 9}=\left\langle\sigma_{d}^{-}\right\rangle$vertical mean
- Guess fraction at the top $\sigma_{d 0}^{t}=\min \left\{\sigma_{\mathcal{P}}, \max \left[\sigma_{d 9}, \kappa \sigma_{\mathcal{P}}\right]\right\}$ $\kappa=$ gddfrac ~ 0.02

Non saturated downdraught 'closure'

σ_{d} first guess at the top, re-adjusted along the descent

- $\sigma_{d 9}=\left\langle\sigma_{d}^{-}\right\rangle$vertical mean
- Guess fraction at the top $\sigma_{d 0}^{t}=\min \left\{\sigma_{\mathcal{P}}, \max \left[\sigma_{d 9}, \kappa \sigma_{\mathcal{P}}\right]\right\}$ $\kappa=$ gddfrac ~ 0.02
- Along the descent, estimate maximum viable fraction $\sigma_{d x}^{\prime}$ for evaporating - less than $\frac{1}{3}$ of remaining precipitation flux when in the higher part, - less than 99% of remaining precipitation when in the detraining part;
- less than gddfrevs $\sim \frac{1}{2}$ of the evaporation produced in microphysics.

Non saturated downdraught 'closure'

σ_{d} first guess at the top, re-adjusted along the descent

- $\sigma_{d 9}=\left\langle\sigma_{d}^{-}\right\rangle$vertical mean
- Guess fraction at the top $\sigma_{d 0}^{t}=\min \left\{\sigma_{\mathcal{P}}, \max \left[\sigma_{d 9}, \kappa \sigma_{\mathcal{P}}\right]\right\}$
$\kappa=$ gddfrac ~ 0.02
- Along the descent, estimate maximum viable fraction $\sigma_{d x}^{l}$ for evaporating - less than $\frac{1}{3}$ of remaining precipitation flux when in the higher part,
- less than 99% of remaining precipitation when in the detraining part;
- less than gddfrevs $\sim \frac{1}{2}$ of the evaporation produced in microphysics.
- maintain $\sigma_{d 0}^{\prime} \leq \sigma_{d x}^{\prime} \Rightarrow\left(\sigma_{d 0}, \sigma_{d x}\right)$ at bottom
- precipitation never exhausted
- single downdraught along the vertical, no restart
- final $\sigma_{d 0}, \sigma_{d x}$ obtained at bottom

Non saturated downdraught 'closure'

σ_{d} first guess at the top, re-adjusted along the descent

- $\sigma_{d 9}=\left\langle\sigma_{d}^{-}\right\rangle$vertical mean
- Guess fraction at the top $\sigma_{d 0}^{t}=\min \left\{\sigma_{\mathcal{P}}, \max \left[\sigma_{d 9}, \kappa \sigma_{\mathcal{P}}\right]\right\}$ $\kappa=$ gddfrac ~ 0.02
- Along the descent, estimate maximum viable fraction $\sigma_{d x}^{\prime}$ for evaporating
- less than $\frac{1}{3}$ of remaining precipitation flux when in the higher part,
- less than 99% of remaining precipitation when in the detraining part;
- less than gddfrevs $\sim \frac{1}{2}$ of the evaporation produced in microphysics.
- maintain $\sigma_{d 0}^{\prime} \leq \sigma_{d x}^{\prime} \Rightarrow\left(\sigma_{d 0}, \sigma_{d x}\right)$ at bottom
- Evolution by relaxation: $\sigma_{d 1}=\sigma_{d 0} e^{\frac{-\Delta t}{\tau_{d}}}+\sigma_{d x}\left(1-e^{\frac{-\Delta t}{\tau_{d}}}\right)$

$$
\tau_{d}= \begin{cases}\text { gddtausig } & \text { if } \operatorname{gddtausig}<0 \\ |\operatorname{gddtausig}| \cdot\left(1-\sigma_{d 9}\right) & \left.\left.\mathcal{P}_{\text {surf }}\right)\right] \\ |\operatorname{gddtausig}| \cdot[1-\min (0.99,|\operatorname{gddwpf}| & \text { if } \operatorname{gdwpf}<0\end{cases}
$$

faster evolution when precipitation intense or large dd fraction

Non saturated downdraught 'closure'

σ_{d} first guess at the top, re-adjusted along the descent

- $\sigma_{d 9}=\left\langle\sigma_{d}^{-}\right\rangle$vertical mean
- Guess fraction at the top $\sigma_{d 0}^{t}=\min \left\{\sigma_{\mathcal{P}}, \max \left[\sigma_{d 9}, \kappa \sigma_{\mathcal{P}}\right]\right\}$ $\kappa=$ gddfrac ~ 0.02
- Along the descent, estimate maximum viable fraction $\sigma_{d x}^{\prime}$ for evaporating
- less than $\frac{1}{3}$ of remaining precipitation flux when in the higher part,
- less than 99% of remaining precipitation when in the detraining part;
- less than gddfrevs $\sim \frac{1}{2}$ of the evaporation produced in microphysics.
- maintain $\sigma_{d 0}^{\prime} \leq \sigma_{d x}^{\prime} \Rightarrow\left(\sigma_{d 0}, \sigma_{d x}\right)$ at bottom
- Evolution by relaxation: $\sigma_{d 1}=\sigma_{d 0} e^{\frac{-\Delta t}{\tau_{d}}}+\sigma_{d x}\left(1-e^{\frac{-\Delta t}{\tau_{d}}}\right)$

$$
\tau_{d}= \begin{cases}\text { gddtausig } & \text { if } \operatorname{gddtausig}<0 \\ |\operatorname{gddtausig}| \cdot\left(1-\sigma_{d 9}\right) & \left.\left.\mathcal{P}_{\text {surf }}\right)\right] \\ |\operatorname{gddtausig}| \cdot[1-\min (0.99,|\operatorname{gddwpf}| & \text { if } \operatorname{gdwpf}<0\end{cases}
$$

faster evolution when precipitation intense or large dd fraction

- $\sigma_{d 1}$ copied at all active levels for advection by model wind

Example mean vertical profiles

Mass flux and relative humidity

Average DD DD_SIGxOMEGA : D038+5

Average DD DD_REL_HUM : D038+5

Example mean vertical profiles

Additional cooling/moistening by inhomogeneity

Average DD DD_T_XS : D038+5

Average DD DD_QV_XS : D038+5

Comparison with Saturated downdraught

The downdraught activity is now localized at places with precipitation; it yields a smaller domain-averaged evaporation
...but not only that (see further).

Comparison with Saturated downdraught

The downdraught activity is now localized at places with precipitation; it yields a smaller domain-averaged evaporation
...but not only that (see further).

Comparison with Saturated downdraught

The downdraught activity is now localized at places with precipitation; it yields a smaller domain-averaged evaporation
...but not only that (see further).

t4ACDOe : 2005/09/10 z12:00 + 5h
DD_EVAP_FLUX lev 60 / 60

Sensitivity tests

- turbulent mixing tentrd
- drag coefficient tddfr
- braking towards surface gddbeta~2, gddalbu~3E4
- evolution/inertia of mesh fraction gddtausig: 1800s reduced down to 1% by intense precipitation

	tentrd	tddfr	saturated
ACRU	$16 \mathrm{E}-5$	$12 \mathrm{E}-4$	yes
ACDO	$12 \mathrm{E}-5$	$16 \mathrm{E}-4$	no
ACDOa	$12 \mathrm{E}-5$	$24 \mathrm{E}-4$	no
ACDOb	$12 \mathrm{E}-6$	$16 \mathrm{E}-4$	no
ACDOc	$12 \mathrm{E}-6$	$12 \mathrm{E}-4$	no
ACDOd	$12 \mathrm{E}-6$	$4 \mathrm{E}-4$	no
ACDOe	$40 \mathrm{E}-6$	$4 \mathrm{E}-4$	no
ACDOf	$40 \mathrm{E}-6$	$2 \mathrm{E}-4$	no
ACDOg	$24 \mathrm{E}-5$	$24 \mathrm{E}-4$	no

Domain-averaged profiles

Domain-averaged profiles

Domain-averaged profiles

Profile at location of maximum surface rain

Profile at location of maximum surface rain

Profile at location of maximum surface rain

Summary

- Tuning:
- due to more feedbacks tha in saturated version, not straightforward to foresee the effect on one tuning on the evaporation
- Multiple feedbacks in Alaro-1, how to choose at which level a problem has to be addressed: cloud scheme (critical humidity profile), microphysics (auto-conversion), radiation (incl. radiative cloud and condensates), updraught, downdraught ?

Summary

- Tuning:
- due to more feedbacks tha in saturated version, not straightforward to foresee the effect on one tuning on the evaporation
- Multiple feedbacks in Alaro-1, how to choose at which level a problem has to be addressed: cloud scheme (critical humidity profile), microphysics (auto-conversion), radiation (incl. radiative cloud and condensates), updraught, downdraught ?
- Uncertainties:
- formulation of water transfer: different values of the constants in the litterature (but small impact)
- ignoring microphysical effects
- no local radiative effects
- 'inertia' (gddtausig) and the closure method: what does actually determine the downdraught area ?

