Cloudiness in the high resolution context

Luc Gerard

Royal Meteorological Institute of Belgium

13 September 2016

$$N_c = \sigma_u + \sigma_D$$
$$N_t = N_c + N_s - N_c N_s$$
$$= N_c + N_s (1 - N_c)$$

$$N_c = \sigma_u + \sigma_D$$

$$N_t = N_c + N_s - N_c N_s$$

$$= N_c + N_s (1 - N_c)$$

$$e = 1 - N_c$$

$$N_t = N_c + N'_s$$

$$N_c = \sigma_u + \sigma_D$$

$$N_t = N_c + N_s - N_c N_s$$

$$= N_c + N_s (1 - N_c)$$

$$e = 1 - N_c$$

$$N_t = N_c + N'_s$$

$$N'_s = N_s (1 - N_c) = N^*_s e$$

where N_s^* is the cloudy fraction of e.

$$N_c = \sigma_u + \sigma_D$$

$$N_t = N_c + N_s - N_c N_s$$

$$= N_c + N_s (1 - N_c)$$

$$e = 1 - N_c$$

$$N_t = N_c + N'_s$$

$$N'_s = N_s (1 - N_c) = N^*_s e$$

where N_s^* is the cloudy fraction of e.

Deep cloud $\Rightarrow N_c$ Statistical cloud scheme on $e = 1 - N_c$ Shallow convection condensation covered by statistical cloud scheme

$$N \approx \left(\frac{q_{\nu}}{q_{w}}\right)^{\frac{1}{4}} \frac{\alpha q_{c}}{\alpha q_{c} + (q_{w} - q_{\nu})^{\frac{1}{2}}}, \qquad \alpha \equiv \text{QXRAL}_{\text{ADJ}} \sim 150.$$
$$q_{t} = q_{c} + q_{\nu}, \qquad q_{\nu} = q_{w}N + H \cdot q_{w}(1 - N)$$

$$N \approx \left(\frac{q_v}{q_w}\right)^{\frac{1}{4}} \frac{\alpha q_c}{\alpha q_c + (q_w - q_v)^{\frac{1}{2}}}, \qquad \alpha \equiv \text{QXRAL}_A\text{DJ} \sim 150.$$
$$q_t = q_c + q_v, \qquad q_v = q_w N + H \cdot q_w (1 - N)$$

Evaporation $\Rightarrow q_v \nearrow$ but assume q_w unchanged, $H < 1 \Rightarrow N \nearrow$ too !

$$\begin{split} \mathbf{N} &\approx \left(\frac{\mathbf{q}_{\mathbf{v}}}{\mathbf{q}_{\mathbf{w}}}\right)^{\frac{1}{4}} \frac{\alpha \mathbf{q}_{\mathbf{c}}}{\alpha \mathbf{q}_{\mathbf{c}} + (\mathbf{q}_{\mathbf{w}} - \mathbf{q}_{\mathbf{v}})^{\frac{1}{2}}}, \qquad \alpha \equiv \mathsf{QXRAL_ADJ} \sim 150. \\ \mathbf{q}_{t} &= \mathbf{q}_{\mathbf{c}} + \mathbf{q}_{\mathbf{v}}, \qquad \mathbf{q}_{\mathbf{v}} = \mathbf{q}_{\mathbf{w}} \mathbf{N} + \mathbf{H} \cdot \mathbf{q}_{\mathbf{w}} (1 - \mathbf{N}) \end{split}$$

Evaporation $\Rightarrow q_v \nearrow$ but assume q_w unchanged, $H < 1 \Rightarrow N \nearrow$ too !

Distinguish a convective cloud fraction N_c , and search N^* = cloudy fraction of $e = 1 - N_c$, q_c^* and q_t^* the mean contents over e.

$$\overline{q_c} = N_c \widehat{q_c}^c + N'_s \widehat{q_c}^s, \qquad \qquad N'_s = N^* \cdot e$$

$$N \approx \left(\frac{q_{\nu}}{q_{w}}\right)^{\frac{1}{4}} \frac{\alpha q_{c}}{\alpha q_{c} + (q_{w} - q_{\nu})^{\frac{1}{2}}}, \qquad \alpha \equiv \text{QXRAL}_{\text{ADJ}} \sim 150.$$
$$q_{t} = q_{c} + q_{\nu}, \qquad q_{\nu} = q_{w}N + H \cdot q_{w}(1 - N)$$

Evaporation $\Rightarrow q_v \nearrow$ but assume q_w unchanged, $H < 1 \Rightarrow N \nearrow$ too !

Distinguish a convective cloud fraction N_c , and search N^* = cloudy fraction of $e = 1 - N_c$, q_c^* and q_t^* the mean contents over e.

$$\overline{q_c} = N_c \widehat{q_c}^c + N'_s \widehat{q_c}^s, \qquad \qquad N'_s = N^* \cdot e$$

▶ same condensate in all clouds ? then $\hat{q_c}^c = \hat{q_c}^s = \frac{q_c^*}{N^*}$ (evaporation over e) $\Rightarrow \overline{q_c} \searrow$ and N_s adjustment does not ensure to maintain $\hat{q_c}^c$ constant.

$$N \approx \left(\frac{q_{\nu}}{q_{w}}\right)^{\frac{1}{4}} \frac{\alpha q_{c}}{\alpha q_{c} + (q_{w} - q_{\nu})^{\frac{1}{2}}}, \qquad \alpha \equiv \text{QXRAL}_{\text{ADJ}} \sim 150.$$
$$q_{t} = q_{c} + q_{\nu}, \qquad q_{\nu} = q_{w}N + H \cdot q_{w}(1 - N)$$

Evaporation $\Rightarrow q_v \nearrow$ but assume q_w unchanged, $H < 1 \Rightarrow N \nearrow$ too !

Distinguish a convective cloud fraction N_c , and search N^* = cloudy fraction of $e = 1 - N_c$, q_c^* and q_t^* the mean contents over e.

$$\overline{q_c} = N_c \widehat{q_c}^c + N'_s \widehat{q_c}^s, \qquad \qquad N'_s = N^* \cdot e$$

- ▶ same condensate in all clouds ? then $\hat{q_c}^c = \hat{q_c}^s = \frac{q_c^*}{N^*}$ (evaporation over e) $\Rightarrow \overline{q_c} \searrow$ and N_s adjustment does not ensure to maintain $\hat{q_c}^c$ constant.
- more concentration in deep clouds: initial $\widehat{q_{c0}}^s = \gamma \widehat{q_c}^c$, $\gamma = \text{QXRCDIL} \sim 0.5$ then evaporation over *e* only further modifies $\widehat{q_c}^s < \widehat{q_{c0}}^s$.

'Protection' of convective cloud

LDREDPR=T in acnebcond: reduced protection of convective fraction. Prevent evaporation over N_c but allow condensation everywhere.

- First compute N_{t0} from XR scheme with $N_c^* = 0$ (e=1).
- ▶ If condensation and $N_{t0} \ge N_c^-$ keep it: $N_s^* = N_{t0}$, $N_c^* = 0$. condensation *detected* by $\overline{q_{vn}} = \overline{q_w}N_{t0} + H\overline{q_w}(1 - N_{t0}) < \overline{q_v}$ if evaporation recompute N_s^* over $e = (1 - N_c^-)$ and keep $N_c^* = N_c^-$.
- Estimation of *total* (rather than stratiform) condensate for radiation:

$$\overline{q_{ct}} = \overline{q_c} + \delta q_c \frac{N_t}{N_s^*}$$

where initial $\overline{q_c}$ includes unchanged convective condensate and δq_c obtained from XR

- output N_s^* and N_c^* to be used in
 - acnebn : radiative cloud fraction and condensates + total condensate $\overline{q_{ct}}$
 - accdev : final XR condensation computation
 - every time a total cloud fraction is to be estimated
- ▶ but still use N_c^- in acnpart, and σ_u , σ_D evolve in accsu.

'Equivalent' cloud fraction for microphysics

$$N_t = N_c + N_s^*(1 - N_c) = N_c + N_s^* - N_c N_s^* = N_c' + N_s'$$

'Equivalent' cloud fraction for microphysics

$$N_t = N_c + N_s^*(1 - N_c) = N_c + N_s^* - N_c N_s^* = N_c' + N_s'$$

initial formulation (3MT)

$$\frac{1}{N_{eq}} = \frac{\alpha_{co}^2}{N'_c} + \frac{(1 - \alpha_{co})^2}{N'_s}, \qquad \qquad \alpha_{co} = \frac{\triangle F_{cc}}{\triangle F_{cc} + \triangle F_{cs}}$$

does not work properly at large N'_c/N_t .

'Equivalent' cloud fraction for microphysics

$$N_t = N_c + N_s^*(1 - N_c) = N_c + N_s^* - N_c N_s^* = N_c' + N_s'$$

initial formulation (3MT)

$$\frac{1}{N_{eq}} = \frac{\alpha_{co}^2}{N'_c} + \frac{(1 - \alpha_{co})^2}{N'_s}, \qquad \qquad \alpha_{co} = \frac{\triangle F_{cc}}{\triangle F_{cc} + \triangle F_{cs}}$$

does not work properly at large N'_c/N_t .

reviewed formulation (CSD)

$$N_{eq} = N_t [1 - \max(0, \alpha_{co} - \frac{N_c}{N_t})]$$

$$\Rightarrow N_{eq} = N_t \text{ as long as } \alpha_{co} < \frac{N_c}{N_t},$$

otherwise $N_{eq} < N_t$ (i.e. larger concentration).

acnebn: radiative cloud fraction and condensates

Radiation requires an input of condensates and cloud fraction.

- ► acnebcond prevents evaporation/condensation over $N_c^- \Rightarrow$ yields a stratiform condensate and cloud fraction
- ▶ Convective condensate has not been saved \Rightarrow re-evaluate it inside acnebn, based on N_c^- .

... or work differently ?

acnebn: prognostic vs diagnostic radiative condensates

LNEB_FP=F : diagnostic

- 'Stratiform' condensate: diagnosed from q_t, reference critical RH profile and distinct parameters from microphysics; saturation humidity corrected for local temperature inversions.
- Convective condensate: re-estimate condensate from N_c^- :
 - estimate $RH = q_v/q_w$ to put in the formula (qxrtgh).
 - invert XR formula:

$$N pprox (RH)^{rac{1}{4}} ig[1 - \exp(-lpha rac{q_c}{\sqrt{(1 - RH)q_{
m sat}}}) ig], \qquad lpha \equiv {\sf qxral}$$

- ► Cloudiness: apply XR formula with $\overline{q_c} = \overline{q_{cs}} + \overline{q_{cc}}$. Recompute $N_c = \frac{\overline{q_{cc}}}{\overline{q_c}} \cdot N_t$. but so called $\overline{q_{cs}}$ does actually include initial convective part.
- LNEB_FP=T : 'prognostic'
 - 'Stratiform' condensate: use directly value $\overline{q_{cs}}$ (i.e. $\overline{q_{ct}}$) from acnebcond
 - Convective condensate: same as LNEB_FP=F
 - ► Cloudiness: same as LNEB_FP=F.
- LNEB_FP=T and QXRAL< 0: prognostic

- LNEB_FP=T and QXRAL< 0: prognostic
 - Total condensate: use directly value $\overline{q_{ct}}$ from acnebcond
 - ► Cloudiness: Combine N_t = Nc* + N^{*}_s(1 N^{*}_c) with N^{*}_c = 0 in case of condensation, N⁻_c in case of evaporation.

Practical problems

- Paradox of one of the base formulas: condensation appears to reduce cloudiness ⇒ neglecting Temperature effects
- Radiative cloud fractions and condensates:
 - Diagnostic approach has been longly tuned along operational performances but contains more arbitrariness (many parameters, departure from mirophysical values...)
 - Pseudo-prognostic approach challenginf tuning, especially in full Alaro-1 physics context
 - prognostic also requires further tuning study
- Protection of convective condensate had to be reviewed to allow resolved condensation over convective part;
- ▶ Need of clarification of everything: the devil is in the details: e.g.
 - ▶ what are the actual outputs of acnebcond ? N_s^* and $\overline{q_c t}$, not N_s and $\overline{q_{cs}}$
 - Apparent 'random overlap' vs fraction of non convective area
 - ► Somehow hidden assumptions: q_w unchanged, other approximations in new protection...