TOUCANS
 and moist prognostic TKE and TTE

Ivan Bašták Ďurán* Jean-François Geleyn Filip Váňa

*Institute for Atmospheric and Environmental Sciences, department of Geosciences, Goethe University Frankfurt
(1) TOUCANS

Framework of stability dependency functions

Length scale

4 Third Order Moments

Scheme with prognostic TKE and TTE/TPE

TOUCANS

T - Third
O - Order moments (TOMs)
U - Unified
C - Condensation
A - Accounting and
N - N-dependent
S - Solver (for turbulence and diffusion)

Reynolds-averaged basic equations:

$$
\begin{aligned}
\frac{D \bar{u}}{d t} & =S_{u} \sqrt{-\overline{\frac{\partial u^{\prime} w^{\prime}}{\partial z}}} \\
\frac{D \bar{v}}{d t} & =S_{v} \sqrt{-\frac{\overline{\partial v^{\prime} w^{\prime}}}{\partial z}} \\
\frac{D \overline{s_{s L}}}{d t} & =S_{s_{s L}} \overline{-\frac{\overline{\partial s_{s L} w^{\prime} w^{\prime}}}{\partial z}} \\
\frac{D \overline{q_{t}}}{d t} & =S_{q_{t}}-\frac{\overline{\partial q_{t}^{\prime} w^{\prime}}}{\partial z}
\end{aligned}
$$

$\left(u, v, w\right.$-wind components, S_{x} - external source terms, $\frac{D()}{d t}=\frac{\partial()}{\partial t}+\bar{u} \frac{\partial()}{\partial x}+\bar{v} \frac{\partial()}{\partial y}, \overline{()}-$ average, ($)^{\prime}$ - fluctuation,z - height, t - time)

Diffused variables

- u, v-horizontal wind components
- q_{t}-total specific moisture
- $s_{s L}=c_{p d}\left(1+\left[\frac{c_{p v}}{c_{p d}}-1\right] q_{t}\right) T+g z-\left(L_{v} q_{l}+L_{s} q_{i}\right)-$ moist static energy
$q_{1 / i}$ - specific humidity of air for liquid or ice water, $L_{s / v}$ latent heat latent heat of sublimation/vaporization, g - acceleration of gravity, T - air temperature, $c_{p d}$ and $c_{p v}$ specific heat values for dry air and water vapour

Turbulent fluxes

- $\overline{w^{\prime} u^{\prime}}=-K_{M} \frac{\partial \bar{u}}{\partial z}$,

$$
\overline{w^{\prime} v^{\prime}}=-K_{M} \frac{\partial \bar{v}}{\partial z}
$$

- $\overline{w^{\prime} s_{s L}{ }^{\prime}}=-K_{H} \frac{\partial s_{s L}}{\partial z}+$ TOMs terms,

$$
\overline{w^{\prime} q_{t}^{\prime}}=-K_{H} \frac{\partial \partial \overline{\bar{q}_{t}}}{\partial z}+\text { TOMs terms }
$$

- $\overline{w^{\prime} \psi^{\prime}}=C_{\psi} \sqrt{u^{2}+v^{2}}\left(\psi-\psi_{s}\right)$ - surface layer
$K_{M / H}$ - turbulent exchange coefficients for momentum and heat and moisture, C_{ψ} drag coefficient, ψ - diffused variable, ()$_{s}$ - variable at surface layer

Exchange coefficients

$$
K_{M}=\frac{\nu^{4}}{C_{\epsilon}} \chi_{3}(\Pi) \sqrt{e_{k}} L, \quad K_{H}=C_{3} \frac{\nu^{4}}{C_{\epsilon}} \phi_{3}(\Pi) \sqrt{e_{k}} L
$$

free parameters
stab. functions

given by
turbulence scheme

$$
\begin{gathered}
e_{k}, e_{t} \\
\Pi=e_{t} / e_{k}-1
\end{gathered}
$$

prognostic turbulence energies may depend on TKE and BVF
$\chi_{3}\left(R i_{f}\right), \phi_{3}\left(R i_{f}\right)$ - stability functions, ν - free parameter, C_{3} - inverse Prantl number at neutrality, L - length scale

Framework of stability dependency functions:

- based on second order moments equations
- simple and flexible emulation of variety of turbulent schemes:
- comparison of schemes
- physics ensemble modeling
- properties of χ_{3}, ϕ_{3} (Bašták, Geleyn, and Váňa, 2014):
- valid for whole range of Ri
- no existence of critical $R i-R i_{c r}$
- anisotropy of turbulence:

$$
\cdot \frac{\partial \chi_{3}}{\partial R i} \neq 0, \frac{\partial \phi_{Q}}{\partial R i} \neq 0
$$

(Ri -gradient Richardson number, ϕ_{Q} - non - energy conversion part of ϕ_{3} coefficient)

Framework of stability dependency functions:

- simple shape in terms of $R i_{f}$:

$$
\begin{aligned}
\chi_{3}(R i) & =\frac{1-\frac{R i_{f}}{R}}{1-R i_{f}}
\end{aligned}, \phi_{3}(R i)=\frac{1-\frac{R i_{f}}{P}}{1-R i_{f}}, ~ 子 \frac{1-\frac{R i_{f}}{Q}}{1-R i_{f}} \quad, \frac{R i}{R i_{f}}=\frac{P\left(R-R i_{f}\right)}{C_{3} R\left(P-R i_{f}\right)}
$$

$$
0<\lim _{R i \rightarrow \infty} P=R i_{f_{c}}<1, R i_{f_{c}}<\lim _{R i \rightarrow \infty} R \equiv R_{\infty} \leq 1, R i_{f_{c}} \leq \lim _{R i \rightarrow \infty} Q \equiv Q_{\infty} \leq 1 .
$$

- factorization of $\phi_{3}(R i)$:

$$
\phi_{3}=\underbrace{\phi_{Q}(R i)}_{\text {anisotropy }} \underbrace{\left(1-\frac{2 O_{\lambda}\left(e_{t}-e_{k}\right)}{C_{4} \overline{w^{\prime 2}}}\right)}_{\text {energy conversion }}, \frac{\partial \phi_{Q}}{\partial R i} \neq 0
$$

$\left(R_{f}=R i K_{H} / K_{M}\right.$-flux Richardson number, O_{λ}-free parameter, C_{4} - coefficient $)$

Framework of stability functions:

- the turbulent scheme then depends on:
- 4(3) free parameters
- ν - overall turbulence intensity,
- C_{ϵ} - turbulent energy dissipation
- following Schmidt and Schumann (1989) we assume: $C_{\epsilon}=\pi \nu^{2}$,
- C_{3}-inverse Prandtl number at neutrality,
- $O_{\lambda}-$ TKE \leftrightarrow TPE conversion,
- 3 "functional dependencies" (P, R, Q)

	Model I	Model II	eeQNSE	eeEFB
P	Const.	Const.	Const.	Ri fun.
R	Const.	Const.	Ri fun.	Ri fun.
Q	Const.	Ri fun.	Ri fun.	Ri fun.

Emulation and extension of turbulent

 schemes:- turbulent schemes without $R i_{c r}$ can be emulated in BGV2014 framework
- continuous extension to unstable regime $(R i<0)$ is required for schemes that are defined only in stable regime $(R i>0)$
- eeQNSE $=$ emulation and extension of Quasi Normal Scale Elimination (QNSE) scheme - Sukoriansky et al. (2005)
- eeEFB $=$ emulation and extension of Energy- and Flux-Budget (EFB) scheme - Zilitinkevich et al. (2013)

Comparison of schemes:

Free parameters:

	Model I	Model II	eeQNSE I	eeQNSE II	eeEFB
ν	0.526	0.526	0.464	0.504	0.532
C_{3}	1.18	1.18	1.39	1.39	1.25
O_{λ}	$2 / 3$	0.290	0.248	0.324	0.113
C_{ϵ}	0.871	0.871	0.676	0.798	0.889

(eeQNSE I - emulation and extension of QNSE in Model I, eeQNSE II - emulation and extension of QNSE in Model II, eeEFB - emulation and extension of EFB in Model I)

Comparison of schemes

Comparison of schemes:

Framework of stability dependency functions

Comparison of schemes

Comparison of schemes:

Scaled dimensionless
squared momentum flux

Ri

Scaled dimensionless squared heat flux

Ri
(data aggregating laboratory experiments (Ohya 2001), LES (Zilitinkevich et al. 2007, 2008), DNS(Stretch et al. 2001), and meteorological observations (Mahrt and Vickers 2005; Uttal et al. 2002; Poulos et al. 2002; Banta et al. 2002; Engelbart et al. 2000))

Prandtl-type mixing lengths I_{m} and I_{h} (CGMIXLEN='AY', in ALARO0='CG') :

$$
I_{m / h}^{G C}=\frac{\kappa z}{1+\frac{\kappa z}{\lambda_{m / h}}\left[\frac{1+\exp \left(-a_{m / h} \sqrt{\frac{z}{H_{p b l}}}+b_{m / h}\right)}{\beta_{m / h}+\exp \left(-a_{m / h} \sqrt{\frac{z}{H_{p b l}}}+b_{m / h}\right)}\right]}
$$

(κ is Von Kármán constant, z is height, $a_{m / h}, b_{m / h}, \beta_{m / h}$ and $\lambda_{m / h}$ are tuning constants and $H_{p b}$ is PBL height)

Length scale

Prandtl-type mixing lengths:

TKE based length scales L

- Bougeault a Lacarrère (1989) :

$$
\begin{aligned}
& L_{B L}(E)=\left(\frac{L_{u p}^{-\frac{4}{5}}+L_{\text {down }}^{-\frac{4}{5}}}{2}\right)^{-\frac{5}{4}} \\
& \quad L_{u p}(E)\left(L_{\text {down }}(E)\right)-L_{\text {upward (downward) }}
\end{aligned}
$$

- $L_{N}=\sqrt{\frac{2 . E}{N^{2}}}$ for stable stratification
- with possibility to use moist BVF
- possible prognostic treatment of L

Conversion between L and I_{m}

- following RMC01:

$$
L_{K}=\frac{C_{\epsilon}}{\nu^{3}} I_{m} \frac{f(R i)^{\frac{1}{4}}}{\chi_{3}^{\frac{1}{2}}}, \quad L_{\epsilon}=\frac{C_{\epsilon}}{\nu^{3}} I_{m} \frac{\chi_{3}^{\frac{3}{2}}}{f(R i)^{\frac{3}{4}}}
$$

- assuming: $L \equiv\left(L_{K}^{3} L_{\epsilon}\right)^{\frac{1}{4}}$ we get:

$$
L=\frac{C_{\epsilon}}{\nu^{3}} I_{m}
$$

Third Order Moments (TOMs)

- parametrization for heat and moisture
- following (Canuto, Cheng, and Howard, 2007):

$$
\overline{w^{\prime} \theta^{\prime}}=-K_{H} \frac{\partial \bar{\theta}}{\partial z}+A_{1}^{\theta} \frac{\partial \overline{w^{\prime 3}}}{\partial z}+A_{2}^{\theta} \frac{\partial \overline{w^{\prime} \theta^{\prime 2}}}{\partial z}+A_{3}^{\theta} \frac{\partial \overline{w^{\prime 2} \theta}}{\partial z}
$$

$$
\overline{w^{\prime 3}}=-0.06 \frac{g}{\theta} \tau^{2} \overline{w^{\prime 2}} \frac{\partial \overline{w^{\prime} \theta^{\prime}}}{\partial z}, \quad \overline{w^{\prime} \theta^{\prime 2}}=-\tau \overline{w^{\prime} \theta^{\prime}} \frac{\partial \overline{w^{\prime} \theta^{\prime}}}{\partial z}, \quad \overline{w^{\prime 2} \theta^{\prime}}=-0.3 \tau \overline{w^{\prime 2}} \frac{\partial \overline{w^{\prime} \theta^{\prime}}}{\partial z}
$$

$A_{1}^{\theta}, A_{2}^{\theta}, A_{3}^{\theta}$ - coefficients, τ - dissipation time scale

- two step solver: local + non-local correction

Prognostic TTE/TPE

- based on Zilitinkevich et al.(2013)
- addition of second prognostic turbulent energy:

Turbulent Potential Energy (TPE), or TTE $=$ TKE + TPE

- consideration of counter-gradient heat transport maintained by velocity shear in very stable stratification
- stability parameter based on energy ratio $\Pi=$ TPE/TKE (linked to fluxes) rather than on local gradients (Ri)

Prognostic TKE- e_{k}, TPE- e_{p} eqs.:

- based on Zilitinkevich et al.(2013)

$$
\begin{aligned}
\frac{d e_{k}}{d t} & =-g \frac{\partial}{\partial p}\left(\rho K_{e_{k}} \frac{\partial e_{k}}{\partial z}\right)+I+I I-\frac{2 e_{k}}{\tau_{k}} \\
\frac{d e_{p}}{d t} & =-g \frac{\partial}{\partial p}\left(\rho K_{e_{p}} \frac{\partial e_{p}}{\partial z}\right)-I I-\frac{2 e_{p}}{\tau_{p}} \\
\tau_{p} & \equiv \tau_{k} \frac{C_{4}}{2 C_{3}}, \quad I=-\overline{u^{\prime} w^{\prime}} \frac{\partial u}{\partial z}-\overline{v^{\prime} w^{\prime}} \frac{\partial v}{\partial z}
\end{aligned}
$$

($I, I I$ - shear and buoyancy source terms, $K_{e_{k}}, K_{e_{t}}$ - turbulent exchange coefficients for TKE and TTE, $\tau_{k}, \tau_{p}, \tau_{t}$ - dissipation time scale for TKE, TPE and TTE, Π - stability parameter, C_{3} - inverse Prandtl number at neutrality, C_{4} - coefficient, p - pressure, g - acceleration of gravity, ρ - density)

Prognostic TTE - $e_{t}=e_{k}+e_{p}$ equation:

$$
\begin{aligned}
\frac{d e_{t}}{d t} & =-g \frac{\partial}{\partial p}\left(\rho K_{e_{t}} \frac{\partial e_{t}}{\partial z}\right)+I-\frac{2 e_{t}}{\tau_{t}} \\
\tau_{t} & \equiv \tau_{k} \frac{C_{4}(1+\Pi)}{C_{4}+2 C_{3} \Pi} \\
R i_{f} & =\frac{\Pi}{\frac{C_{4}}{2 C_{3}}+\Pi}
\end{aligned}
$$

(e_{p} - TPE, $K_{e_{t}}$ - turbulent exchange coefficient for TTE, τ_{t} - dissipation time scale for TTE, $R i_{f}=R i K_{H} / K_{M}$ - flux Richardson number, C_{4} - coefficient)

Dry versus moist case:

- dry:

$$
I_{d}=\frac{g}{\theta} \overline{\theta^{\prime} w^{\prime}}, \quad e_{p d}=\frac{g}{\theta} \frac{\overline{\theta^{\prime 2}}}{2 \frac{\partial \theta}{\partial z}}
$$

- moist:

$$
\begin{aligned}
I_{m} & =\frac{g}{\rho_{0}} \overline{w^{\prime} \rho^{\prime}}=E_{s_{s L}} \overline{w^{\prime} s_{s L^{\prime}}}+E_{q_{t}} \overline{w^{\prime} q_{t}^{\prime}} \\
e_{p m} & =\frac{E_{s L} \overline{s_{s L}^{\prime} 2}}{2 \frac{\partial s_{s L}}{\partial z}}+\frac{E_{q_{t}} \overline{q_{t}^{\prime 2}}}{2 \frac{\partial q_{t}}{\partial z}} .
\end{aligned}
$$

- $E_{s L}, E_{q_{t}}$ are derived after (Marquet and Geleyn, 2013) and depend on cloud fraction C and skewness parameter C_{n}

$$
\begin{aligned}
& E_{s_{s L}}=\frac{g M(C)}{\overline{c_{p}} \bar{T}}, \\
& E_{q_{t}}=g M(C)\left\{\left(\frac{R_{v}-R_{d}}{R_{d} \cdot \bar{q}_{d}+R_{v} \cdot q_{v}}-\frac{c_{p v}-c_{p d}}{\overline{c_{p}}}\right)\right. \\
& +\hat{Q}\left[\frac{L_{v s}(\bar{T})\left(R_{d} \cdot \overline{q_{d}}+R_{v} \cdot \overline{q_{v}}\right)}{\overline{c_{p}} \bar{T} R_{v}}-1\right] . \\
& \left.\left[\frac{R_{v}-R_{d}}{R_{d} \cdot \overline{q_{d}}+R_{v} \cdot \overline{q_{v}}}+\frac{1}{\left(1-q_{t}\right)\left(1+D_{C}\right)}\right]\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \widehat{Q}=C^{F\left(C_{n}\right)}, \quad F\left(C_{n}\right)=0.5\left[\sqrt{\left(6.25 C_{n}\right)^{2}+4}-6.25 C_{n}\right] \\
& C_{n}=\frac{-\frac{w^{\prime} s_{s}^{\prime}}{C_{p} T}}{}=\left(\frac{R_{v}-R_{d}}{R_{d} \cdot \widehat{q_{d}}+R_{v} \cdot \widehat{q}_{v}}-\frac{c_{p v}-c_{p d}}{\widehat{c}_{p}}\right) \overline{w^{\prime} q_{t}^{\prime}} \\
& {\left[\frac{L_{v s}(\widehat{T})\left(R_{d} \cdot \widehat{q_{d}}+R_{v} \cdot \widehat{q}_{v}\right)}{\widehat{c_{p} T R_{v}}}-1\right]\left[\frac{R_{v}-R_{d}}{R_{d} \cdot \widehat{q_{d}}+R_{v} \cdot \widehat{q_{v}}}+\frac{1}{\left(1-\widehat{\left.q_{t}\right)\left(1+D_{C}\right)}\right] \overline{w^{\prime} q_{t}^{\prime}}}\right.}
\end{aligned}
$$

Fitting of $\widehat{Q}\left(C, C_{n}\right)$ on LES data (courtesy of D. Lewellen)

Buoyancy term //
ARM case - Continental shallow cumulus:

LES data from microHH model (http://github.com/microhh).

Buoyancy term // BOMEX case - Trade cumulus:

LES data from microHH model (http://github.com/microhh).

Buoyancy term //

RICO case - Precipitating trade cumulus:

LES data from microHH model (http://github.com/microhh).

Scheme with prognostic TKE and TTE/TPE

Thank you for your attention

