Convergence of the 3MT deep convection parameterization with the explicit convection at high resolution

Luc Gerard

February 2010

Topics

Topics

Part I: Cloud evolution.

Part II : Closure.

Part III : Preliminary Results.

The Alaro-0 vision of draft-evolution

L. Gerard, February 2010

The Alaro-0 vision of draft-evolution

Instant-growth up to equilibrium level
Gradual increase of ω_{u} and σ_{u}

From Alaro-0 to nature to Alaro- 1 concepts

From Alaro-0 to nature to Alaro-1 concepts

From Alaro-0 to nature to Alaro-1 concepts

From Alaro-0 to nature to Alaro-1 concepts

L. Gerard, February 2010

From Alaro-0 to nature to Alaro-1 concepts

L. Gerard, February 2010

Box story - handle with care

Resolved is blind - SG acts locally after looking globally.

Box story - handle with care

Resolved is blind - SG acts locally after looking globally.

Box story - handle with care

Resolved is blind - SG acts locally after looking globally.

Box story - handle with care

Resolved is blind - SG acts locally after looking globally.

$$
\begin{aligned}
& \sigma_{u}\left(\omega_{u}-\bar{\omega}\right)+\left(1-\sigma_{u}\right)\left(\omega_{e}-\bar{\omega}\right)=0 \\
& \text { subgrid relative velocity : } \omega_{u}^{\diamond}=\omega_{u}-\bar{\omega}
\end{aligned}
$$

Box story - handle with care

Resolved is blind - SG acts locally after looking globally.

> Virtual Unresolved Cloud :
> - condenses with $\sigma_{u}\left(\omega_{u}-\bar{\omega}\right)$
> - Transports with $\sigma_{u}\left(\omega_{u}-\omega_{e}\right)$
> - Entrains with $\sigma_{u}\left(\omega_{u}-\omega_{e}\right)$
> - Rises with ω_{u}

Box story - handle with care

Resolved is blind - SG acts locally after looking globally.

Virtual Unresolved Cloud :

- condenses with $\sigma_{u}\left(\omega_{u}-\bar{\omega}\right)$
- Transports with $\sigma_{u}\left(\omega_{u}-\omega_{e}\right)$
- Entrains with $\sigma_{u}\left(\omega_{u}-\omega_{e}\right)$
- Rises with ω_{u}

Newton law formulation

$$
\frac{d\left[\sigma_{u}\left(\omega_{u}-\bar{\omega}\right)\right]}{d t}-\frac{d\left[\left(1-\sigma_{u}\right)\left(\omega_{e}-\bar{\omega}\right)\right]}{d t}=\left(\mathbf{F}_{\mathbf{b}}+\mathrm{drag}\right)
$$ no more 'apparent mass coefficient'

$$
2 \frac{d\left[\sigma_{u} \omega_{u}^{\diamond}\right]}{d t}=\left(\mathbf{F}_{\mathbf{b}}+\mathrm{drag}\right)
$$

$$
\omega_{u}^{\diamond}=\omega_{u}-\bar{\omega}
$$

Box story - The voice of the elders

Box story - The voice of the elders

Box story - The voice of the elders

Bjerknes (1938), Asai and Kasahara (1967)

$$
\begin{array}{ll}
\frac{\partial T_{u}}{\partial t} \approx-w_{u} \frac{g}{c_{p}} \frac{\partial h}{\partial \phi} & \leq 0 \\
\frac{\partial T_{e}}{\partial t} \approx-w_{e} \frac{g}{c_{p}} \frac{\partial s}{\partial \phi} & \geq 0
\end{array}
$$

Box story - The voice of the elders

Bjerknes (1938), Asai and Kasahara (1967)

$$
\begin{array}{ll}
\frac{\partial T_{u}}{\partial t} \approx-w_{u} \frac{g}{c_{p}} \frac{\partial h}{\partial \phi} & \leq 0 \\
\frac{\partial T_{e}}{\partial t} \approx-w_{e} \frac{g}{c_{p}} \frac{\partial s}{\partial \phi} & \geq 0
\end{array}
$$

$$
T_{v u}-{\overline{T_{v}}}^{+} \approx\left(T_{v u}-\overline{T_{v}}\right)[1-\sigma_{u} \underbrace{\left(1-\frac{\Delta s}{\Delta h}\right)}_{b \geq 1}]
$$

Bjeknes buoyancy-reduction coefficient $b \geq 1$

Box story - The voice of the elders

Bjerknes (1938), Asai and Kasahara (1967)

$$
\begin{array}{ll}
\frac{\partial T_{u}}{\partial t} \approx-w_{u} \frac{g}{c_{p}} \frac{\partial h}{\partial \phi} & \leq 0 \\
\frac{\partial T_{e}}{\partial t} \approx-w_{e} \frac{g}{c_{p}} \frac{\partial s}{\partial \phi} & \geq 0
\end{array}
$$

$$
T_{v u}-{\overline{T_{v}}}^{+} \approx\left(T_{v u}-\overline{T_{v}}\right)[1-\sigma_{u} \underbrace{\left(1-\frac{\Delta s}{\Delta h}\right)}_{b \geq 1}]
$$

Bjeknes buoyancy-reduction coefficient $b \geq 1$

BBR in practice

Extrapolating local gradients upwards and downwards is inadequate.

$$
\mathbf{b}=1-\min \left(0, \frac{\frac{h_{e}^{l}-h_{e}^{b}}{p^{b}-p^{l}}}{\frac{s_{e}^{t}-s_{e}^{l}}{p^{l}-p^{t}}} \quad(\geq 0)\right)
$$

BBR in practice

Extrapolating local gradients upwards and downwards is inadequate.

$$
\mathbf{b}=1-\min \left(0, \frac{\frac{h_{e}^{l}-h_{e}^{b}}{p^{b}-p^{l}}}{\frac{s_{e}^{t}-s_{e}^{l}}{p^{l}-p^{t}}} \quad(\geq 0)\right)
$$

Buoyancy, Drag and entrainment

Buoyancy, Drag and entrainment

Buoyancy expresses forces between updraught and environment

$$
m \frac{d w}{d t}=\mathbf{F}_{\mathbf{u}}=-\mathbf{F}_{\mathbf{e}} \quad \Longrightarrow \quad \mathbf{F}_{\mathbf{b}}=-\sigma_{u} g^{2} \frac{p}{R_{a}} \frac{T_{v u}-\overline{T v}}{\overline{T_{v}} T_{v u}}\left(1-b \sigma_{u}\right)
$$

Buoyancy, Drag and entrainment

Buoyancy expresses forces between updraught and environment

$$
m \frac{d w}{d t}=\mathbf{F}_{\mathbf{u}}=-\mathbf{F}_{\mathbf{e}} \quad \Longrightarrow \quad \mathbf{F}_{\mathbf{b}}=-\sigma_{u} g^{2} \frac{p}{R_{a}} \frac{T_{v u}-\overline{T v}}{\overline{T_{v}} T_{v u}}\left(1-b \sigma_{u}\right)
$$

Entrainment concerns processes at the cloud-environment interface

$$
\begin{gathered}
\frac{\triangle M_{u}}{M_{u}}=\lambda_{u} \triangle \phi=\frac{E_{u} \triangle p}{M_{u}} \\
M_{u}=\sigma_{u}\left(\omega_{u}-\omega_{e}\right)=\sigma_{u} \omega_{u}^{*}=\frac{\sigma_{u}}{1-\sigma_{u}} \omega_{u}^{\diamond} \\
m \frac{d w}{d t}=\left(w_{u}-w_{e}\right) \triangle M_{u} \\
\operatorname{drag}=\sigma_{u} \frac{R_{a} T_{v u}}{p}\left(\lambda_{u}+\frac{\mathcal{K}_{d u}}{g}\right) \frac{\omega_{u}^{\diamond 2}}{\left(1-\sigma_{u}\right)^{2}}
\end{gathered}
$$

Total derivative includes advection

$$
\frac{d\left[\sigma_{u} \omega_{u}^{\diamond}\right]}{d t}=\left.\frac{\partial\left[\sigma_{u} \omega_{u}^{\diamond}\right]}{\partial t}\right|_{\mathrm{phys}}+\left.\frac{\partial\left[\sigma_{u} \omega_{u}^{\diamond}\right]}{\partial t}\right|_{\mathrm{dyn}}+\mathbf{V} \cdot \nabla_{\eta}\left[\sigma_{u} \omega_{u}^{\diamond}\right]+\dot{\eta}_{u} \frac{\partial p}{\partial \eta} \frac{\partial\left[\sigma_{u} \omega_{u}\right]}{\partial p}-\dot{\bar{\eta}} \frac{\partial p}{\partial \eta} \frac{\partial\left[\sigma_{u} \bar{\omega}\right]}{\partial p}
$$

Total derivative includes advection

$$
\frac{d\left[\sigma_{u} \omega_{u}^{\diamond}\right]}{d t}=\left.\frac{\partial\left[\sigma_{u} \omega_{u}^{\diamond}\right]}{\partial t}\right|_{\mathrm{phys}}+\left.\frac{\partial\left[\sigma_{u} \omega_{u}^{\diamond}\right]}{\partial t}\right|_{\mathrm{dyn}}+\mathbf{V} \cdot \nabla_{\eta}\left[\sigma_{u} \omega_{u}^{\diamond}\right]+\dot{\eta}_{u} \frac{\partial p}{\partial \eta} \frac{\partial\left[\sigma_{u} \omega_{u}\right]}{\partial p}-\dot{\bar{\eta}} \frac{\partial p}{\partial \eta} \frac{\partial\left[\sigma_{u} \bar{\omega}\right]}{\partial p}
$$

combined with resolved advection of ω_{u}^{\diamond} and σ_{u}

$$
\frac{d\left[\sigma_{u} \omega_{u}^{\diamond}\right]}{d t}=\left.\frac{\partial\left[\sigma_{u} \omega_{u}^{\diamond}\right]}{\partial t}\right|_{\mathrm{phys}}+\omega_{u}^{\diamond} \frac{\partial\left(\sigma_{u} \omega_{u}\right)}{\partial p}
$$

Total derivative includes advection

$$
\frac{d\left[\sigma_{u} \omega_{u}^{\diamond}\right]}{d t}=\left.\frac{\partial\left[\sigma_{u} \omega_{u}^{\diamond}\right]}{\partial t}\right|_{\mathrm{phys}}+\left.\frac{\partial\left[\sigma_{u} \omega_{u}^{\diamond}\right]}{\partial t}\right|_{\mathrm{dyn}}+\mathbf{V} \cdot \nabla_{\eta}\left[\sigma_{u} \omega_{u}^{\diamond}\right]+\dot{\eta}_{u} \frac{\partial p}{\partial \eta} \frac{\partial\left[\sigma_{u} \omega_{u}\right]}{\partial p}-\dot{\bar{\eta}} \frac{\partial p}{\partial \eta} \frac{\partial\left[\sigma_{u} \bar{\omega}\right]}{\partial p}
$$

combined with resolved advection of ω_{u}^{\diamond} and σ_{u}

$$
\frac{d\left[\sigma_{u} \omega_{u}^{\diamond}\right]}{d t}=\left.\frac{\partial\left[\sigma_{u} \omega_{u}^{\diamond}\right]}{\partial t}\right|_{\text {phys }}+\omega_{u}^{\diamond} \frac{\partial\left(\sigma_{u} \omega_{u}\right)}{\partial p}
$$

Resolved advection of σ_{u} and ω_{u}^{\diamond} is necessary

- to get the cloud moving with the wind
- to eliminate the horizontal advective term from the subgrid tendency.
- Vertical shear mixes different columns.
- S.L. advection means interpolating origin points.

Complete motion equation

Complete motion equation

$$
\begin{aligned}
\left.\frac{\partial \omega_{u}^{\diamond}}{\partial t}\right|_{\text {phys }}=-\frac{1}{2} g^{2} \frac{p\left(T_{v u}-\overline{T_{v}}\right)}{R_{a} T_{v u} \overline{T_{v}}}\left(1-\mathbf{b} \sigma_{u}\right) & +\frac{1}{2} \frac{R_{a} T_{v u}}{p}\left(\lambda_{u}+\frac{\mathcal{K}_{d u}}{g}\right) \frac{\omega_{u}^{\diamond 2}}{\left(1-\sigma_{u}\right)^{2}} \\
& -\omega_{u}^{\diamond} \xlongequal{\left.\stackrel{\frac{\partial \omega_{u}^{\diamond}}{\partial p}+\frac{\partial \bar{\omega}}{\partial p}+\left(\omega_{u}^{\diamond}+\bar{\omega}\right) \frac{\partial \ln \sigma_{u}}{\partial p}}{\partial p} \frac{\partial \ln \sigma_{u}}{\partial t}\right)}
\end{aligned}
$$

Complete motion equation

$$
\begin{aligned}
\left.\frac{\partial \omega_{u}^{\diamond}}{\partial t}\right|_{\text {phys }}=-\frac{1}{2} g^{2} \frac{p\left(T_{v u}-\overline{T_{v}}\right)}{R_{a} T_{v u} \overline{T_{v}}}\left(1-\mathbf{b} \sigma_{u}\right) & +\frac{1}{2} \frac{R_{a} T_{v u}}{p}\left(\lambda_{u}+\frac{\mathcal{K}_{d u}}{g}\right) \frac{\omega_{u}^{\diamond 2}}{\left(1-\sigma_{u}\right)^{2}} \\
& \left.-\omega_{u}^{\diamond} \xlongequal{\frac{\partial \omega_{u}^{\diamond}}{\partial p}+\frac{\partial \bar{\omega}}{\partial p}+\left(\omega_{u}^{\diamond}+\bar{\omega}\right) \frac{\partial \ln \sigma_{u}}{\partial p}}+\frac{\partial \ln \sigma_{u}}{\partial t}\right)
\end{aligned}
$$

Auto-advection terms are critical at rising top.

Complete motion equation

$$
\begin{aligned}
\left.\frac{\partial \omega_{u}^{\diamond}}{\partial t}\right|_{\text {phys }}=-\frac{1}{2} g^{2} \frac{p\left(T_{v u}-\overline{T_{v}}\right)}{R_{a} T_{v u} \overline{T_{v}}}\left(1-\mathbf{b} \sigma_{u}\right) & +\frac{1}{2} \frac{R_{a} T_{v u}}{p}\left(\lambda_{u}+\frac{\mathcal{K}_{d u}}{g}\right) \frac{\omega_{u}^{\diamond 2}}{\left(1-\sigma_{u}\right)^{2}} \\
& \left.-\omega_{u}^{\diamond} \xlongequal{\frac{\partial \omega_{u}^{\diamond}}{\partial p}+\frac{\partial \bar{\omega}}{\partial p}+\left(\omega_{u}^{\diamond}+\bar{\omega}\right) \frac{\partial \ln \sigma_{u}}{\partial p}}+\frac{\partial \ln \sigma_{u}}{\partial t}\right)
\end{aligned}
$$

Auto-advection terms are critical at rising top.
For this we need first to gather some more tools.

Membership/classification - how an ascent is built

$$
\left({\overline{T_{w}}}^{l},{\overline{q_{w}}}^{l}\right) \text { elevated to next level above : }\left(T_{u}^{l-1}, q_{u}^{l-1}\right)
$$

Membership/classification - how an ascent is built

$$
\left(\overline{T_{w}},{\overline{q_{w}}}^{l}\right) \text { elevated to next level above : }\left(T_{u}^{l-1}, q_{u}^{l-1}\right)
$$

- Ascent segment :

$$
T_{u}^{l-1}>T_{w e}^{l-1} \Longrightarrow \delta_{\text {asc }}^{l-1}=1 \text { else back to blue point } \delta_{\mathrm{asc}}^{l-1}=0
$$

Membership/classification - how an ascent is built

$$
\left({\overline{T_{w}}}^{l},{\overline{q_{w}}}^{l}\right) \text { elevated to next level above : }\left(T_{u}^{l-1}, q_{u}^{l-1}\right)
$$

- Ascent segment :

$$
T_{u}^{l-1}>T_{w e}^{l-1} \Longrightarrow \delta_{\text {asc }}^{l-1}=1 \text { else back to blue point } \delta_{\text {asc }}^{l-1}=0
$$

- Buoyancy $T_{v u}^{l}>T_{v e}^{l}$ or steady-state $\omega_{u}<0 \Longrightarrow \delta_{\text {bu }}^{l}=1$ else 0

Membership/classification - how an ascent is built

$$
\left({\overline{T_{w}}}^{l},{\overline{q_{w}}}^{l}\right) \text { elevated to next level above : }\left(T_{u}^{l-1}, q_{u}^{l-1}\right)
$$

- Ascent segment:

$$
T_{u}^{l-1}>T_{w e}^{l-1} \Longrightarrow \delta_{\text {asc }}^{l-1}=1 \text { else back to blue point } \delta_{\text {asc }}^{l-1}=0
$$

- Buoyancy $T_{v u}^{l}>T_{v e}^{l}$ or steady-state $\omega_{u}<0 \Longrightarrow \delta_{\text {bu }}^{l}=1$ else 0
- Scaling level : both buoyancy and moisture convergence : $\delta_{\text {sca }}=1$ else 0 .

Membership/classification - how an ascent is built

$$
\left({\overline{T_{w}}}^{l},{\overline{q_{w}}}^{l}\right) \text { elevated to next level above : }\left(T_{u}^{l-1}, q_{u}^{l-1}\right)
$$

- Ascent segment:

$$
T_{u}^{l-1}>T_{w e}^{l-1} \Longrightarrow \delta_{\text {asc }}^{l-1}=1 \text { else back to blue point } \delta_{\text {asc }}^{l-1}=0
$$

- Buoyancy $T_{v u}^{l}>T_{v e}^{l}$ or steady-state $\omega_{u}<0 \Longrightarrow \delta_{\text {bu }}^{l}=1$ else 0
- Scaling level : both buoyancy and moisture convergence : $\delta_{\text {sca }}=1$ else 0 .
- Base level :
$-\delta_{\mathrm{bas}}^{l}=\delta_{\mathrm{asc}}^{l}\left(1-\delta_{\mathrm{asc}}^{l+1}\right)$
$-\delta_{\mathrm{bas}}^{l}=\delta_{\mathrm{bu}}^{l}\left(1-\delta_{\mathrm{bu}}^{l+1}\right)$
better for sub-base above a local CIN barrier.

Top evolution : activity index

Top evolution : activity index

Top evolution : activity index

$\delta_{\text {act }}=1$ at levels reached by the ascent originating at the base
$\delta_{a c 9}$ retrieved from profile of ω_{u}^{-}or σ_{u}^{-}

Top evolution : activity index

Buoyancy accelerates the fluid during $\xi \triangle t$

Top evolution : activity index

$\delta_{\text {ac9 }}, \delta_{\text {act }}$ record the discrete evolution of cloud vertical extension
ξ diagnosed for estimating time-averaged and final states
α_{r} records fractional path above upper last active level

Top evolution : activity index

$\delta_{\text {ac9 }}, \delta_{\text {act }}$ record the discrete evolution of cloud vertical extension
ξ diagnosed for estimating time-averaged and final states
α_{r} records fractional path above upper last active level

- α_{r} is necessary for initiating an updraught with $\left|\omega_{u}\right|$ small;
- is necessary to compute ξ;
- is associated to a single cloud top : top level detected in advected variables (ω_{u}, σ_{u}), and can move its position following resolved advection.
- α_{r} cannot be interpolated between different columns.

Top evolution : activity index

$\delta_{\text {ac9 }}, \delta_{\text {act }}$ record the discrete evolution of cloud vertical extension
ξ diagnosed for estimating time-averaged and final states
α_{r} records fractional path above upper last active level

Idea : use a single α_{r} for the column, memorized in a local pseudo-historical variable :

- not advected, no interpolation ;
- corresponding to the 'main' updraught segment.

Complete motion equation (bis)

Complete motion equation (bis)

$$
\begin{aligned}
\left.\frac{\partial \omega_{u}^{\diamond}}{\partial t}\right|_{\mathrm{phys}}=-\xi^{l} & \frac{1}{2} g^{2} \frac{p\left(T_{v u}-\overline{T_{v}}\right)}{R_{a} T_{v u} \overline{T_{v}}}\left(1-\mathbf{b} \sigma_{u}\right)+\xi^{l} \frac{1}{2} \frac{R_{a} T_{v u}}{p}\left(\lambda_{u}+\frac{\mathcal{K}_{d u}}{g}\right) \frac{\omega_{u}^{\diamond 2}}{\left(1-\sigma_{u}\right)^{2}} \\
& -\delta_{\mathrm{ac} 9}^{l} \omega_{u}^{\diamond l}\left(\frac{\partial \omega_{u}^{\diamond}}{\partial p}+\frac{\partial \bar{\omega}}{\partial p}+\left(\omega_{u}^{\diamond}+\bar{\omega}\right) \frac{\partial \ln \sigma_{u}}{\partial p}+\frac{\partial \ln \sigma_{u}}{\partial t}\right) \\
& \quad-\left(1-\delta_{\mathrm{ac} 9}^{l}\right) \omega_{u}^{\diamond l+1}\left\{\xi^{l}\left(\frac{\partial \bar{\omega}}{\partial p}+\frac{\partial \ln \sigma_{u}}{\partial t}\right)+\underline{\left.\left(\xi^{l+1}-\xi^{l}\right) \frac{\left(\omega_{u}^{\diamond}+\bar{\omega}\right)^{l+1}}{p^{l+1}-p^{l}}\right\}}\right.
\end{aligned}
$$

Complete motion equation (bis)

$$
\begin{aligned}
\left.\frac{\partial \omega_{u}^{\diamond}}{\partial t}\right|_{\text {phys }}=-\xi^{l} & \frac{1}{2} g^{2} \frac{p\left(T_{v u}-\overline{T_{v}}\right)}{R_{a} T_{v u} \overline{T_{v}}}\left(1-\mathbf{b} \sigma_{u}\right)+\xi^{l} \frac{1}{2} \frac{R_{a} T_{v u}}{p}\left(\lambda_{u}+\frac{\mathcal{K}_{d u}}{g}\right) \frac{\omega_{u}^{\diamond 2}}{\left(1-\sigma_{u}\right)^{2}} \\
& -\delta_{\mathrm{ac} 9}^{l} \omega_{u}^{\diamond l}\left(\frac{\partial \omega_{u}^{\diamond}}{\partial p}+\frac{\partial \bar{\omega}}{\partial p}+\left(\omega_{u}^{\diamond}+\bar{\omega}\right) \frac{\partial \ln \sigma_{u}}{\partial p}+\frac{\partial \ln \sigma_{u}}{\partial t}\right) \\
& \quad-\left(1-\delta_{\mathrm{ac} 9}^{l}\right) \omega_{u}^{\diamond l+1}\left\{\xi^{l}\left(\frac{\partial \bar{\omega}}{\partial p}+\frac{\partial \ln \sigma_{u}}{\partial t}\right)+\left(\xi^{l+1}-\xi^{l}\right) \frac{\left(\omega_{u}^{\diamond}+\bar{\omega}\right)^{l+1}}{p^{l+1}-p^{l}}\right\}
\end{aligned}
$$

At newly active levels $0<\xi^{l}<1, \delta_{\mathrm{ac} 9}^{l}=0$, and

$$
\left(\xi^{l+1}-\xi^{l}\right)=\frac{\left(p^{l+1}-p^{l}\right)}{\omega_{u}^{l+1} \triangle t} \Longrightarrow \omega_{u}^{\diamond l^{+}} \approx \omega_{u}^{\diamond l+1}+\ldots
$$

Steady-state motion equation

$$
\left.\frac{\partial \omega_{u}^{\diamond}}{\partial t}\right|_{\mathrm{phys}}=0=-F\left(1-\mathbf{b} \sigma_{u}\right)+K \frac{\omega_{u}^{\diamond 2}}{\left(1-\sigma_{u}\right)^{2}}-\omega_{u}^{\diamond} \beta
$$

- Without auto-advection : $\beta \sim 0 \Longrightarrow \omega_{u}^{\diamond \|}=-\left(1-\sigma_{u}\right) \sqrt{1-\mathbf{b} \sigma_{u}} \sqrt{\frac{F}{K}}$
- If we have a guess for $\beta=\left(\frac{\partial \omega_{u}}{\partial p}+\omega_{u} \frac{\partial \ln \sigma_{u}}{\partial p}+\frac{\partial \ln \sigma_{u}}{\partial t}\right) \approx \frac{\partial \omega_{u}}{\partial p}$:

$$
\begin{gathered}
\omega_{u}^{\diamond \|^{2}}-\frac{F}{K}\left(1-\mathbf{b} \sigma_{u}\right)\left(1-\sigma_{u}\right)^{2}-\frac{\beta}{K} \omega_{u}^{\diamond \|}\left(1-\sigma_{u}\right)^{2}=0 \\
\omega_{u}^{\diamond \|} \sim \frac{\beta}{2 K}\left(1-\sigma_{u}\right)^{2}-\left(1-\sigma_{u}\right) \sqrt{\left(\frac{\beta}{2 K}\right)^{2}\left(1-\sigma_{u}\right)^{2}+\frac{F}{K}\left(1-\mathbf{b} \sigma_{u}\right)}
\end{gathered}
$$

Base and secondary ascents vs triggering

Base and secondary ascents vs triggering

Base and secondary ascents vs triggering

Base and secondary ascents vs triggering

Base and secondary ascents vs triggering

In principle ascents could start from various level at the same time;

Base and secondary ascents vs triggering

In principle ascents could start from various level at the same time;

But

- they should be catched up by the ascent originating from the base;
- actual updraught triggering rather starts from the Boundary layer.

Base and secondary ascents vs triggering

In principle ascents could start from various level at the same time;

But

- they should be catched up by the ascent originating from the base;
- actual updraught triggering rather starts from the Boundary layer.

If this covers some reality (?)
its treatment appears feasible only in still atmosphere (no sheared advection / no mixing).

Closure : a steady-state diagnostic

Current closure relations express an equilibrium.
Larger-scale 'forcing' \longrightarrow subgrid scheme response

Closure : a steady-state diagnostic

Current closure relations express an equilibrium.
Larger-scale 'forcing' \longrightarrow subgrid scheme response

Closure : a steady-state diagnostic

Current closure relations express an equilibrium.
Larger-scale 'forcing' \longrightarrow subgrid scheme response
q_{v} convergence \(\left.\rightarrow \begin{array}{c}Prognostic closure

scaling of M_{u} in steady state

way to this :\end{array}\right\}\)| latent heat storage by increasing $\sigma_{u}\left(h_{u}-h_{e}\right)$ |
| :---: |
| + latent heat release by condensation |
| entrainment and condensation |
| 'somewhere in the grid-column' |
| \neq level the vapour entered the column |

Closure : a steady-state diagnostic

Current closure relations express an equilibrium.
Larger-scale 'forcing' \longrightarrow subgrid scheme response

$$
q_{v} \text { convergence } \rightarrow \begin{gathered}
\begin{array}{l}
\text { High resolution } \\
* \text { resolved scheme } \rightarrow
\end{array}\left\{\begin{array}{l}
\text { excess of } q_{v}>q_{\mathrm{sat}} \\
\text { decrease of } q_{\mathrm{sat}}(\bar{\omega} \uparrow, T \searrow) \\
\text { not limited to MoCon }
\end{array}\right. \\
* \text { Subgrid scheme } \rightarrow\left\{\begin{array}{l}
\text { condensation } \\
\text { storage in } \sigma_{u} \text { extension }
\end{array}\right. \\
\Longrightarrow \text { tendency of } q_{v}, q_{t} \text { over the column may be } \neq 0 .
\end{gathered}
$$

Closure : a steady-state diagnostic

Current closure relations express an equilibrium.
Larger-scale 'forcing' \longrightarrow subgrid scheme response

$$
q_{v} \text { convergence } \rightarrow \begin{aligned}
& \text { High resolution } \\
& * \text { resolved scheme } \rightarrow\left\{\begin{array}{l}
\text { excess of } q_{v}>q_{\text {sat }} \\
\text { decrease of } q_{\text {sat }}(\bar{\omega} \uparrow, T \searrow) \\
\text { not limited to MoCon }
\end{array}\right. \\
& * \text { Subgrid scheme } \rightarrow\left\{\begin{array}{l}
\text { condensation } \\
\text { storage in } \sigma_{u} \text { extension }
\end{array}\right. \\
& \Longrightarrow \text { tendency of } q_{v}, q_{t} \text { over the column may be } \neq 0 .
\end{aligned}
$$

Rising cloud :

* MoCon feeds resolved and subgrid schemes, \neq at \neq levels;
* Resolved condensation not limited to new moisture arrival.

Closure : a steady-state diagnostic

Current closure relations express an equilibrium.
Larger-scale 'forcing' \longrightarrow subgrid scheme response

$$
q_{v} \text { convergence } \rightarrow \begin{aligned}
& \text { High resolution } \\
& * \text { resolved scheme } \rightarrow\left\{\begin{array}{l}
\text { excess of } q_{v}>q_{\text {sat }} \\
\text { decrease of } q_{\text {sat }}(\bar{\omega} \uparrow, T \searrow) \\
\text { not limited to MoCon }
\end{array}\right. \\
& * \text { Subgrid scheme } \rightarrow\left\{\begin{array}{l}
\text { condensation } \\
\text { storage in } \sigma_{u} \text { extension }
\end{array}\right. \\
& \Longrightarrow \text { tendency of } q_{v}, q_{t} \text { over the column may be } \neq 0 .
\end{aligned}
$$

Rising cloud :

* MoCon feeds resolved and subgrid schemes, \neq at \neq levels;
* Resolved condensation not limited to new moisture arrival.

Writing a MOCON steady-state closure

$$
\int_{p_{t}}^{p_{b}} \sigma_{u}\left(\omega_{u}^{\diamond \|}+\bar{\omega}\right) \frac{\delta q_{c a}}{g}=-\int_{p_{t}}^{p_{b}} \mathrm{CVGQ} \frac{d p}{g}
$$

Normalized mass flux :

$$
\mu=\frac{M_{u}}{M_{B}}=\frac{\sigma_{u} \omega_{u}^{\diamond}}{\sigma_{b} \omega_{b}^{\diamond}} \quad \Longrightarrow \quad M_{B}=-\frac{\int_{p_{t}} \operatorname{CVGQ} \frac{d p}{g}+\int_{p_{t}} \sigma_{u} \bar{\omega} \frac{\delta q_{c a}}{g}}{\int_{p_{t}}^{p_{b}} \mu \delta q_{\mathrm{ca}}}
$$

Closure yields M_{B}, then get steady-state mesh fraction by solving

$$
\sigma_{u} \omega_{u}^{\diamond \|}=-\sigma_{u}\left(1-\sigma_{u}\right) \sqrt{1-\mathbf{b} \sigma_{u}} \sqrt{\frac{F}{K}}=\mu M_{B}
$$

CAPE diagnostic closure

Nordeng's (1994) CAPE closure

$$
\begin{gathered}
\left.\frac{\partial \mathrm{CAPE}}{\partial t}\right|_{u d}=-\frac{\mathrm{CAPE}}{\tau} \\
\left.\frac{\partial \mathrm{CAPE}}{\partial t}\right|_{u d} \approx-\left.\int g \frac{\partial \bar{\theta}}{\partial t}\right|_{u d} \frac{d p}{\rho g} \approx-\int M_{u} \frac{\partial \bar{\theta}}{\partial p} \frac{d p}{g}
\end{gathered}
$$

can only be estimated assuming a steady-state updraught:
$\frac{\partial \theta_{u v}}{\partial t} \sim 0, \bar{\theta} \sim \overline{\theta_{v}}, M_{u}$ up to the equilibrium level and does no longer vary during τ.

CAPE diagnostic closure

Nordeng's (1994) CAPE closure

$$
\begin{gathered}
\left.\frac{\partial \mathrm{CAPE}}{\partial t}\right|_{u d}=-\frac{\mathrm{CAPE}}{\tau} \\
\left.\frac{\partial \mathrm{CAPE}}{\partial t}\right|_{u d} \approx-\left.\int g \frac{\partial \bar{\theta}}{\partial t}\right|_{u d} \frac{d p}{\rho g} \approx-\int M_{u} \frac{\partial \bar{\theta}}{\partial p} \frac{d p}{g}
\end{gathered}
$$

can only be estimated assuming a steady-state updraught:
$\frac{\partial \theta_{u v}}{\partial t} \sim 0, \bar{\theta} \sim \overline{\theta_{v}}, M_{u}$ up to the equilibrium level and does no longer vary during τ.

MTCS : Transport and Condensation

$$
-\left.\frac{\partial \bar{T}}{\partial t}\right|_{\mathrm{ud}}=\frac{1}{c_{p}}\left\{\frac{\triangle\left(\frac{\sigma_{u}}{1-\sigma_{u}} \omega_{u}^{\diamond}\left(s_{u}-\bar{s}\right)\right)}{\triangle p}+L \frac{\sigma_{u}\left(\omega_{u}^{\diamond}+\bar{\omega}\right) \delta q_{c a}}{\triangle p}\right\}
$$

CAPE diagnostic closure

$$
\begin{gathered}
T_{v} \approx T\left(1+\nu q_{v}\right), \\
\mu=\frac{M_{u}}{M_{B}}=\frac{\sigma_{u} \omega_{u}^{\diamond}}{\sigma_{b} \omega_{b}^{\diamond}} \\
M_{B} \sum\left\{\frac{1}{p} \triangle\left[\frac{\mu}{1-\sigma_{u}}\left(\frac{s_{u}-\bar{s}}{c_{p}}+\nu T\left(q_{u}-\bar{q}\right)\right)\right]\right\}+M_{B} \sum\left\{\frac{\mu \delta q_{c a}}{p}\left[\frac{L}{c_{p}}-\nu T\right]\right\} \\
=\frac{1}{\tau} \sum\left(T_{v u}-\overline{T_{v}}\right) \frac{\Delta p}{p}+\sum \frac{\sigma_{u} \bar{\omega} \delta q_{c a}}{p}\left[\frac{L}{c_{p}}-\nu T\right]
\end{gathered}
$$

Normalized mass flux

Entrainment/Detrainment associated to $M_{u}^{*}=\sigma_{u}\left(\omega_{u}-\omega_{e}\right)$.

$$
\frac{\partial \ln M_{u}^{*}}{\partial p}=\left(\lambda_{u}-\kappa_{u}\right) \frac{\triangle \phi}{\triangle p} \quad \Longrightarrow \quad \mu^{* l}=\mu^{* l+1} \exp \left(\left(\lambda_{u}^{l}-\kappa_{u}^{l}\right)\left(\phi^{l}-\phi^{l+1}\right)\right)
$$

Normalized mass flux

Entrainment/Detrainment associated to $M_{u}^{*}=\sigma_{u}\left(\omega_{u}-\omega_{e}\right)$.

$$
\frac{\partial \ln M_{u}^{*}}{\partial p}=\left(\lambda_{u}-\kappa_{u}\right) \frac{\triangle \phi}{\Delta p} \quad \Longrightarrow \quad \mu^{* l}=\mu^{* l+1} \exp \left(\left(\lambda_{u}^{l}-\kappa_{u}^{l}\right)\left(\phi^{l}-\phi^{l+1}\right)\right)
$$

Basic assumptions:

- M_{u} increases with the entrainment, detrainment is negligible where $\frac{\partial \omega_{u}^{\triangleright \|}}{\partial p}>0$;
- σ_{u} remains constant (at $\bar{\omega} \sim 0$) elsewhere, where there is detrainment.
- build $\mu \sim \mu^{*}$ from the bottom up, with $\mu=1$ at lowest base
- assign a weight to the other (sub)-bases related to the integrated buoyancy of the associated segment

Normalized mass flux

Entrainment/Detrainment associated to $M_{u}^{*}=\sigma_{u}\left(\omega_{u}-\omega_{e}\right)$.

$$
\frac{\partial \ln M_{u}^{*}}{\partial p}=\left(\lambda_{u}-\kappa_{u}\right) \frac{\triangle \phi}{\triangle p} \quad \Longrightarrow \quad \mu^{* l}=\mu^{* l+1} \exp \left(\left(\lambda_{u}^{l}-\kappa_{u}^{l}\right)\left(\phi^{l}-\phi^{l+1}\right)\right)
$$

Basic assumptions:

- M_{u} increases with the entrainment, detrainment is negligible where $\frac{\partial \omega_{u}^{\triangleright \|}}{\partial p}>0$;
- σ_{u} remains constant (at $\bar{\omega} \sim 0$) elsewhere, where there is detrainment.
- build $\mu \sim \mu^{*}$ from the bottom up, with $\mu=1$ at lowest base
- assign a weight to the other (sub)-bases related to the integrated buoyancy of the associated segment

$$
\mu^{\prime l}= \begin{cases}\text { if } \delta_{\mathrm{bas}}^{l}=1: & \text { base weight } \\ \text { if } \delta_{\mathrm{asc}}^{l}=1: & \begin{cases}\mu^{* l+1} \exp \left\{\lambda_{u}^{l}\left(\phi^{l}-\phi^{l+1}\right)\right\} & \text { if }\left(\frac{F}{K}\right)^{l}>\left(\frac{F}{K}\right)^{l+1} \\ \mu^{* l+1} \frac{\omega_{u}^{\diamond \| l}}{\omega_{u}^{\diamond \| l+1}} & \text { otherwise }\end{cases} \\ \text { if } \delta_{\mathrm{asc}}^{l}=0: & 0\end{cases}
$$

Steady-state $\omega_{u}^{\diamond / \|}$

Auto-advection is important where buoyancy is small, and inversely.

$$
\begin{gathered}
\omega_{u}^{\diamond \|^{2}}-\frac{F}{K}\left(1-\mathbf{b} \sigma_{u}\right)\left(1-\sigma_{u}\right)^{2}-\frac{\beta}{K} \omega_{u}^{\triangleright \|}\left(1-\sigma_{u}\right)^{2}=0 \\
-\omega_{u}^{\| l} \approx \begin{cases}\max \left(\sqrt{F / K}, \frac{-\omega_{u}^{\| l+1}}{1+K\left(p^{l+1}-p^{l}\right)}\right) & \text { if } \frac{F}{K} \geq 0 \\
\max \left(0,-\sqrt{-F / K}+\frac{-\omega_{u}^{\| l+1}}{1+K\left(p^{l+1}-p^{l}\right)}\right) & \text { if } \frac{F}{K}<0\end{cases}
\end{gathered}
$$

In addition : prevent σ_{u} to decrease just above the base.
Base level has small buoyancy - base entrainment must be accounted for.

Local steady-state mesh fraction

$$
g(\sigma, b, c)=\sigma(1-\sigma) \sqrt{1-b \sigma}+c \sigma=\frac{-M_{B} \mu}{\sqrt{F / K}}, \quad c=\frac{-\bar{\omega}}{\sqrt{F / K}}
$$

Local steady-state mesh fraction

$$
g(\sigma, b, c)=\sigma(1-\sigma) \sqrt{1-b \sigma}+c \sigma=\frac{-M_{B} \mu}{\sqrt{F / K}}, \quad c=\frac{-\bar{\omega}}{\sqrt{F / K}}
$$

Local steady-state mesh fraction

$$
g(\sigma, b, c)=\sigma(1-\sigma) \sqrt{1-b \sigma}+c \sigma=\frac{-M_{B} \mu}{\sqrt{F / K}}, \quad c=\frac{-\bar{\omega}}{\sqrt{F / K}}
$$

+ forbid σ_{u} bigger than the one of the maximum for $c=0$.

Mesh fraction evolution : prognostic closure

Mesh fraction profile given by $\nu=\sigma_{u}^{\|} / \sigma_{B}^{\|}$.

$$
\sigma_{B}^{\|}=\frac{\sum \sigma_{u}^{\| k} \triangle p^{k} \delta_{\mathrm{sca}}^{k}}{\sum \triangle p^{k} \delta_{\mathrm{sca}}^{k}}
$$

Mesh fraction evolution : prognostic closure

Mesh fraction profile given by $\nu=\sigma_{u}^{\|} / \sigma_{B}^{\|}$.

$$
\sigma_{B}^{\|}=\frac{\sum \sigma_{u}^{\| k} \triangle p^{k} \delta_{\mathrm{sca}}^{k}}{\sum \triangle p^{k} \delta_{\mathrm{sca}}^{k}}
$$

A prognostic evolution is still possible - limiting it to steady-state $\sigma_{u}^{\|}$.

$$
\begin{gathered}
\frac{\partial \sigma_{B}}{\partial t} \int_{p_{t}}^{p_{b}} \nu\left(h_{u}-h_{e}\right) \frac{d p}{g}=\sigma_{B} \int_{p_{t}}^{p_{b}} L \nu\left(\omega_{u}^{\diamond \prime}+\bar{\omega}\right) \frac{\delta q_{c a}}{g}+\int_{p_{t}}^{p_{b}} L \cdot \mathrm{CVGQ} \frac{d p}{g} \\
\omega_{u}^{\diamond \prime}=\beta \omega_{u}^{\diamond \|}, \quad \beta=\frac{\sum \omega_{u}^{\diamond k} \delta p^{k} \delta_{\mathrm{act}}^{k}}{\sum \omega_{u}^{\diamond \| k} \delta p^{k} \delta_{\mathrm{act}}^{k}} \\
\sigma_{B}^{-}=\left\langle\sigma_{u}^{l-}>\epsilon_{\sigma}\right\rangle \quad \sigma_{u}^{l+}=\min \left(\sigma_{u}^{\| l}, \nu^{l} \sigma_{B}^{+}\right)
\end{gathered}
$$

Mesh fraction evolution : prognostic closure

Mesh fraction profile given by $\nu=\sigma_{u}^{\|} / \sigma_{B}^{\|}$.

$$
\sigma_{B}^{\|}=\frac{\sum \sigma_{u}^{\| k} \triangle p^{k} \delta_{\mathrm{sca}}^{k}}{\sum \triangle p^{k} \delta_{\mathrm{sca}}^{k}}
$$

A prognostic evolution is still possible - limiting it to steady-state $\sigma_{u}^{\|}$.

$$
\begin{gathered}
\frac{\partial \sigma_{B}}{\partial t} \int_{p_{t}}^{p_{b}} \nu\left(h_{u}-h_{e}\right) \frac{d p}{g}=\sigma_{B} \int_{p_{t}}^{p_{b}} L \nu\left(\omega_{u}^{\diamond \prime}+\bar{\omega}\right) \frac{\delta q_{c a}}{g}+\int_{p_{t}}^{p_{b}} L \cdot \mathrm{CVGQ} \frac{d p}{g} \\
\omega_{u}^{\diamond \prime}=\beta \omega_{u}^{\diamond \|}, \quad \beta=\frac{\sum \omega_{u}^{\diamond k} \delta p^{k} \delta_{\mathrm{act}}^{k}}{\sum \omega_{u}^{\diamond \| k} \delta p^{k} \delta_{\mathrm{act}}^{k}} \\
\sigma_{B}^{-}=\left\langle\sigma_{u}^{l-}>\epsilon_{\sigma}\right\rangle \quad \sigma_{u}^{l+}=\min \left(\sigma_{u}^{\| l}, \nu^{l} \sigma_{B}^{+}\right)
\end{gathered}
$$

σ_{u} memory not limited to active levels (for retrieving the norm σ_{B}).

$$
\delta_{a c 9} \text { obtained from } \omega_{u}^{\diamond-}<-\epsilon
$$

Transport fluxes

$$
J_{\psi}^{\mathrm{conv} l}=\frac{1}{g} \underbrace{\sigma_{u} \omega_{u}^{*}}_{-M_{t}}\left(\psi_{u}-\bar{\psi}\right), \quad \frac{\partial \psi}{\partial t}=-\frac{\partial}{\partial p} M_{t}\left(\psi-\psi_{u}\right)=-g \frac{\partial J_{\psi}^{\mathrm{conv}}}{\partial p}
$$

Transport fluxes

$$
\begin{gathered}
J_{\psi}^{\text {conv } l}=\frac{1}{g} \underbrace{\sigma_{u} \omega_{u}^{*}}_{-M_{t}}\left(\psi_{u}-\bar{\psi}\right), \quad \frac{\partial \psi}{\partial t}=-\frac{\partial}{\partial p} M_{t}\left(\psi-\psi_{u}\right)=-g \frac{\partial J_{\psi}^{\text {conv }}}{\partial p} \\
\triangle J_{\psi}^{\text {conv } l}=\frac{1}{g}\left\{\xi^{\bar{l}}\left[\widehat{\omega}_{u} \widehat{\omega_{u}^{*}}\left(\psi_{u}-\bar{\psi}\right)\right]^{\bar{l}}-\xi^{\overline{l-1}}\left[\sigma_{u} \widehat{\omega_{u}^{*}}\left(\psi_{u}-\bar{\psi}\right)\right]^{\overline{l-1}}\right\}, \quad \widehat{\omega_{u}^{*}}=\frac{\omega_{u}^{*+}+\omega_{u}^{*-}}{2}
\end{gathered}
$$

Transport fluxes

$$
\begin{gathered}
J_{\psi}^{\text {conv } l}=\frac{1}{g} \underbrace{\sigma_{u} \omega_{u}^{*}}_{-M_{t}}\left(\psi_{u}-\bar{\psi}\right), \quad \frac{\partial \psi}{\partial t}=-\frac{\partial}{\partial p} M_{t}\left(\psi-\psi_{u}\right)=-g \frac{\partial J_{\psi}^{\text {conv }}}{\partial p} \\
\triangle J_{\psi}^{\text {conv } l}=\frac{1}{g}\left\{\xi^{\bar{l}}\left[\widehat{\omega}_{u} \widehat{\omega_{u}^{*}}\left(\psi_{u}-\bar{\psi}\right)\right]^{\bar{l}}-\xi^{\overline{l-1}}\left[\sigma_{u} \widehat{\omega_{u}^{*}}\left(\psi_{u}-\bar{\psi}\right)\right]^{\overline{l-1}}\right\}, \quad \widehat{\omega_{u}^{*}}=\frac{\omega_{u}^{*+}+\omega_{u}^{*-}}{2}
\end{gathered}
$$

The travel time $\left(\xi^{\overline{l-1}}-\xi^{\bar{l}}\right) \triangle t$ induces a deposition corresponding to cloud $\left(\psi_{u}\right)$ creation.
Transport flux is

$$
\xi M_{t}=-\xi^{\bar{l}}\left[\frac{\sigma_{u}}{1-\sigma_{u}} \frac{\omega_{u}^{\diamond+}+\omega_{u}^{\diamond-}}{2} \triangle t\right]^{\bar{l}}=\xi^{\bar{l}} c^{\bar{l}}=\xi^{\bar{l}} \mathrm{ZFORM}^{\bar{l}} \geq 0
$$

Transport fluxes

$$
\begin{gathered}
J_{\psi}^{\text {conv } l}=\frac{1}{g} \underbrace{\sigma_{u} \omega_{u}^{*}}_{-M_{t}}\left(\psi_{u}-\bar{\psi}\right), \quad \frac{\partial \psi}{\partial t}=-\frac{\partial}{\partial p} M_{t}\left(\psi-\psi_{u}\right)=-g \frac{\partial J_{\psi}^{\text {conv }}}{\partial p} \\
\triangle J_{\psi}^{\text {conv } l}=\frac{1}{g}\left\{\xi^{\bar{l}}\left[\widehat{\omega}_{u} \widehat{\omega_{u}^{*}}\left(\psi_{u}-\bar{\psi}\right)\right]^{\bar{l}}-\xi^{\overline{l-1}}\left[\sigma_{u} \widehat{\omega_{u}^{*}}\left(\psi_{u}-\bar{\psi}\right)\right]^{\overline{l-1}}\right\}, \quad \widehat{\omega_{u}^{*}}=\frac{\omega_{u}^{*+}+\omega_{u}^{*-}}{2}
\end{gathered}
$$

The travel time $\left(\xi^{\overline{l-1}}-\xi^{\bar{l}}\right) \triangle t$ induces a deposition corresponding to cloud $\left(\psi_{u}\right)$ creation.
Transport flux is

$$
\begin{gathered}
\xi M_{t}=-\xi^{\bar{l}}\left[\frac{\sigma_{u}}{1-\sigma_{u}} \frac{\omega_{u}^{\diamond+}+\omega_{u}^{\diamond-}}{2} \Delta t\right]^{\bar{l}}=\xi^{\bar{l}} c^{\bar{l}}=\xi^{\bar{l}} \text { ZFORM }^{\bar{l}} \geq 0 \\
J_{\psi}^{\text {conv } \bar{l}}=\frac{(\xi c)^{\bar{l}}}{\triangle p^{l}+(\xi c)^{\bar{l}}}\left\{J_{\psi}^{\text {conv } \overline{l-1}}+\frac{\triangle p^{l}}{g \triangle t}\left(\frac{\psi^{l+1}+\psi^{l}}{2}-\frac{\psi_{u}^{l+1}+\psi_{u}^{l}}{2}\right)\right\}
\end{gathered}
$$

Condensation fluxes

Convective condensation associated to

$$
M_{c}=\left[\sigma_{u} \frac{\omega_{u}^{\diamond+}+\omega_{u}^{\diamond-}}{2} \Delta t\right]^{\bar{l}}=d^{\bar{l}}=\text { ZFORA }^{\bar{l}} \geq 0
$$

Condensation fluxes

Convective condensation associated to

$$
M_{c}=\left[\sigma_{u} \frac{\omega_{u}^{\diamond+}+\omega_{u}^{\diamond-}}{2} \Delta t\right]^{\bar{l}}=d^{\bar{l}}=\mathrm{ZFORA}^{\bar{l}} \geq 0
$$

Variation of ξ cannot produce condensation.

$$
\frac{\delta q_{c}}{\delta t}=\left(-\sigma_{u} \omega_{u}^{\diamond}\right) \xi \frac{\triangle q_{c a}}{\triangle p}=-\frac{\delta q_{v}}{\delta t}
$$

Condensation fluxes

Convective condensation associated to

$$
M_{c}=\left[\sigma_{u} \frac{\omega_{u}^{\diamond+}+\omega_{u}^{\diamond-}}{2} \Delta t\right]^{\bar{l}}=d^{\bar{l}}=\mathrm{ZFORA}^{\bar{l}} \geq 0
$$

Variation of ξ cannot produce condensation.

$$
\frac{\delta q_{c}}{\delta t}=\left(-\sigma_{u} \omega_{u}^{\diamond}\right) \xi \frac{\triangle q_{c a}}{\triangle p}=-\frac{\delta q_{v}}{\delta t}
$$

Vertical transport ignored effect of condensation on $\bar{\psi}$: include this transport in the condensation flux.

$$
\begin{aligned}
&\left(\psi_{*}^{l}-\psi^{l}\right)=\frac{1}{\triangle p^{l}+(\xi c)^{\overline{l-1}}}\left\{(\xi c)^{\overline{l-1}}\left(\psi *^{l-1}-\psi^{l-1}\right)\right. \\
&\left.+\frac{(\xi d)^{\overline{l-1}}\left(\psi_{u}^{l}-\psi_{u}^{l-1}\right)+(\xi d)^{\bar{l}}\left(\psi_{u}^{l+1}-\psi_{u}^{l}\right)}{2}\right\}
\end{aligned}
$$

Detrainment area fraction

Local condensate budget within the subgrid updraught.

* condensate generation
$\propto \xi^{l} d^{l} \triangle q_{c a}$
* inside transport
* entrainment
* local storage
$\propto \xi^{l} \sigma_{u}^{l}\left(\omega_{u}^{\diamond}+\overline{\omega_{u}}\right)^{l}$
$\propto \xi^{l} c^{l} \lambda_{u}^{l} \overline{q_{c}}{ }^{l}$
$\propto\left(\delta_{\mathrm{act}} \sigma_{u}^{l+}-\delta_{\mathrm{ac} 9} \sigma_{u}^{l-}\right) q_{c u}^{l}$
* detrained condensate
$\propto D \xi^{l} \triangle t q_{c u}=\delta \sigma_{D} q_{c D}$
where $\xi^{l} \rightarrow 0$ at the rising top

Detrainment area fraction

Local condensate budget within the subgrid updraught.

* condensate generation
$\propto \xi^{l} d^{l} \triangle q_{c a}$
* inside transport
$\propto \xi^{l} \sigma_{u}^{l}\left(\omega_{u}^{\diamond}+\overline{\omega_{u}}\right)^{l}$
* entrainment
$\propto \xi^{l} c^{l} \lambda_{u}^{l} \overline{q_{c}}$
* local storage
$\propto\left(\delta_{\mathrm{act}} \sigma_{u}^{l+}-\delta_{\mathrm{ac} 9} \sigma_{u}^{l-}\right) q_{c u}^{l}$
* detrained condensate
$\propto D \xi^{l} \triangle t q_{c u}=\delta \sigma_{D} q_{c D}$
where $\xi^{l} \rightarrow 0$ at the rising top

Assuming $q_{c D} \approx q_{c u}$ not satisfactory

- pure mass budget must be further assessed.

