TKE solver

Vertical profile of Prandtl number

QNSE vs CCH02

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

TOUCANS -special issues

Ivan Bašták Ďurán, Jean-François Geleyn and Filip Váňa

ALARO-1 working days, Budapest, 16.-19. February 2010

Mixing lengths	relations

- Motivation
- Derivation
- Conversion to *Ri*-form
- TKE solver
 pTKE scheme
 - eTKE scheme
- 3
- Vertical profile of Prandtl number
- Prandtl number
- Vertical aspect of Prandtl number
- Match of Prt
- 4
- QNSE vs CCH02
- 3D space of degrees of freedom

Relations between mixing lengths I_m (Prandtl type) and L_K , L_ϵ (TKE)

- enables usage of TKE mixing lengths (conversion from $L \equiv \sqrt{L_K \cdot L_\epsilon}$ to I_m)

- required for derivation of stability functions $F_{m/h}$ in eTKE scheme

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Derivation of stability functions $F_{m/h}$: condition of equivalence with full TKE scheme:

$$\tilde{E}\left(\boldsymbol{L}_{\boldsymbol{K}}\right) = \frac{E}{\epsilon\left(\boldsymbol{L}_{\boldsymbol{\kappa}}\right)}\left[I\left(\boldsymbol{L}_{\boldsymbol{K}}\right) + II\left(\boldsymbol{L}_{\boldsymbol{K}}\right)\right]$$

definition of $F_{m/h}$:

$$F_{m/h} = \frac{\widetilde{K}_{m/h}}{I_m I_{m/h} \sqrt{\left[\left(\frac{\partial \overline{u}}{\partial z} \right)^2 + \left(\frac{\partial \overline{v}}{\partial z} \right)^2 \right]}}$$

E - TKE (Turbulence Kinetic Energy), \tilde{E} - TKE at stationary equilibrium *I* - shear term, *II* - buoyancy term, ϵ - dissipation $K_{m/h}$ - exchange coefficients

Idea from RMC01 to compare two formalisms: similarity laws:

$$\widetilde{E} = \alpha \kappa^2 z^2 \left[\left(\frac{\partial \overline{u}}{\partial z} \right)^2 + \left(\frac{\partial \overline{v}}{\partial z} \right)^2 \right] \phi_E \left(\frac{z}{L_{MO}} \right)$$
$$\overline{u'w'}^2 + \overline{v'w'}^2 = \kappa^4 z^4 \left[\left(\frac{\partial \overline{u}}{\partial z} \right)^2 + \left(\frac{\partial \overline{v}}{\partial z} \right)^2 \right]^2 \phi_m^{-4} \left(\frac{z}{L_{MO}} \right)$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

 κ - von Karman constant, α -constant $\phi_E\left(\frac{z}{L_{MO}}\right), \phi_m\left(\frac{z}{L_{MO}}\right)$ - stability functions L_{MO} - Monin Obukhov mixing length Mixing lengths relations TKE solver vertical profile of Prandtl number QNSE vs CCH02

with TKE schemes:

$$\widetilde{E} = \frac{C_{K}}{C_{\epsilon}} L_{K} L_{\epsilon} \left[\left(\frac{\partial \overline{u}}{\partial z} \right)^{2} + \left(\frac{\partial \overline{v}}{\partial z} \right)^{2} \right] f(Ri)$$

$$\overline{u'w'}^{2} + \overline{v'w'}^{2} = \chi_{3}^{2} \frac{C_{K}^{3}}{C_{\epsilon}} L_{K}^{3} L_{\epsilon} \left[\left(\frac{\partial \overline{u}}{\partial z} \right)^{2} + \left(\frac{\partial \overline{v}}{\partial z} \right)^{2} \right]^{2} f(Ri)$$

$$f(Ri) = \chi_{3}(Ri) - RiC_{3}\phi_{3}(Ri)$$

 C_{K} , C_{ϵ} - closure constants

 $\chi_3(Ri), \phi_3(Ri)$ - stability functions, Ri - gradient Richardson number

◆□ > ◆□ > ◆臣 > ◆臣 > 臣 の < @

Mixing lengths relations	TKE solver	Vertical profile of Prandtl number	QNSE vs CCH02
Derivation			

Result:

$$L_{\kappa}C_{\kappa}\chi_{3} = \frac{\kappa z}{\sqrt{\alpha}} \frac{1}{\phi_{m}^{2}\sqrt{\phi_{E}}}$$
$$\frac{L_{\epsilon}}{C_{\epsilon}} = \kappa z \alpha^{\frac{3}{2}} \frac{\phi_{m}^{2}\phi_{E}^{\frac{3}{2}}\chi_{3}}{f(Ri)}$$

・ロ> < 回> < 三> < 三> < 三> < 回> < 回> < <

Mixing lengths relations TKE solver Vertical profile of Prandtl number QNSE vs CCH02 0000000 Conversion to **Ri**-form Conditions: $L_{\mathcal{K}} = L_{\epsilon} \text{ for } \mathcal{R}i = 0 \Rightarrow \frac{1}{\alpha^2} = C_{\mathcal{K}} C_{\epsilon} \equiv \nu^4$ from CCH02 : $\phi_m = \frac{1}{\chi_3(Ri)^{\frac{1}{2}} f(Ri)^{\frac{1}{4}}}$

Assumption:

$$\phi_E \phi_m^2 = 1$$

Prolongation:

$$\kappa z \rightarrow I_m$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

TKE solver

Vertical profile of Prandtl number

QNSE vs CCH02

Conversion to *Ri*-form

Result:

$$L_{K}C_{K} = \nu I_{m} \frac{f(Ri)^{\frac{1}{4}}}{\chi_{3}^{\frac{1}{2}}}$$
$$\frac{L_{\epsilon}}{C_{\epsilon}} = \frac{I_{m}}{\nu^{3}} \frac{\chi_{3}^{\frac{3}{2}}}{f(Ri)^{\frac{3}{4}}}$$

◆□ → ◆□ → ◆ 三 → ◆ 三 → のへで

Mixing lengths relations <u>pTKE</u> scheme

TKE solver

Vertical profile of Prandtl number

QNSE vs CCH02

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ◆ ○ ◆

pTKE scheme - TKE equation

$$\frac{\partial E}{\partial t} + ADV(E) = -\frac{\partial}{\partial z} \left(-\kappa_E \frac{\partial E}{\partial z} \right) + \frac{1}{\tau_\epsilon} \left(\tilde{E} - E \right)$$

advection diffusion with AF sch. relaxation

$$\begin{split} \tau_{\epsilon} &= \frac{E}{\epsilon} \text{ - dissipation time scale} \\ \mathcal{K}_{E} &= -\frac{\overline{E'w'} + \frac{\overline{\rho'w'}}{\rho}}{\frac{\partial E}{\partial z}} \text{ - auto-diffusion vertical coefficient for the TKE} \end{split}$$

TKE solver

Vertical profile of Prandtl number

QNSE vs CCH02

pTKE scheme

FULL LEVEL E_{l} HALF LEVEL $\widetilde{E}, K_{E}, \tau_{\epsilon}, I_{m}, \beta_{E}$ FULL LEVEL E_{l+1}

 $\beta_{E} = sqrt\beta$ - decentering factor for TKE

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − ∽ へ ⊙

TKE solver

Vertical profile of Prandtl number

QNSE vs CCH02

pTKE scheme

pTKE scheme:

$$\widetilde{E} = \left(\frac{\widetilde{K}_*}{\nu I_m}\right)^2$$

$$\tau_{\epsilon} = \frac{\nu^3 \sqrt{E}}{I_m} = \frac{I_m^2}{\nu^2 K^*}$$

$$K_E = \frac{I_m \sqrt{E}}{\nu} = \frac{K^*}{\nu^2}$$
first time step
$$\nu = (C_K C_{\epsilon})^{\frac{1}{4}}, K^* = \sqrt{K_m K_N}$$

 K_N - K_m for neutral stratification (Ri = 0)

TKE solver

Vertical profile of Prandtl number

QNSE vs CCH02

pTKE scheme

TKE solver:

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

TKE solver

Vertical profile of Prandtl number

QNSE vs CCH02

eTKE scheme

Differences between eTKE and pTKE: Stability functions:

$$F_m(Ri) = \chi_3(Ri)\sqrt{f(Ri)}$$

$$F_h(Ri) = \frac{\phi_3(Ri)}{\chi_3(Ri)}F_m(Ri)$$

Expression for K_m :

$$K_m = L_K C_K \chi_3 \sqrt{E}$$

Relation for ϕ_m (influences $L_{K/\epsilon}(I_m)$ conversion): $pTKE: \phi_m = \frac{1}{f(Ri)}$ $eTKE: \phi_m = \frac{1}{\chi_3(Ri)^{\frac{1}{2}}f(Ri)^{\frac{1}{4}}}$

TKE solver

Vertical profile of Prandtl number

QNSE vs CCH02

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

eTKE scheme

Modification of \tilde{E} , τ_{ϵ} and K_{E} in eTKE: From TKE scheme:

$$\frac{1}{\tau_{\epsilon}} = \frac{C_{\epsilon}}{L_{\epsilon}}\sqrt{E}$$
$$K_{m} = L_{\kappa}C_{\kappa}\chi_{3}\sqrt{E}$$

with $L_{K/\epsilon}(I_m)$ conversion:

$$\frac{1}{\tau_{\epsilon}} = \frac{\nu^3}{l_m} \frac{f(Ri)^{\frac{3}{4}}}{\chi_3(Ri)^{\frac{3}{2}}} \sqrt{E}$$

$$K_m = \nu l_m f(Ri)^{\frac{1}{4}} \chi_3(Ri)^{\frac{1}{2}} \sqrt{E}$$

 Mixing lengths relations
 TKE solver
 Vertical profile of Prandtl number
 QNSE vs CCH02

 eTKE scheme

using *K*_{*}:

$$K_* = \sqrt{K_m \cdot K_N} = K_m \cdot f(Ri)^{\frac{1}{4}} \chi_3(Ri)^{\frac{1}{2}}$$

we get:

$$\frac{1}{\tau_{\epsilon}} = \frac{\nu^{3}}{l_{m}} \frac{f(Ri)^{\frac{3}{4}}}{\chi_{3}(Ri)^{\frac{3}{2}}} \sqrt{E} \quad \text{different from pTKE}$$
$$K_{*} = \nu l_{m} \sqrt{E} \Rightarrow \widetilde{E} = \left(\frac{\widetilde{K}_{*}}{\nu l_{m}}\right)^{2} \quad \text{identical with pTKE}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽へ⊙

Relation for K_E modified according to change in τ_{ϵ} in order to keep ratio $\frac{\frac{1}{\tau_{\epsilon}}}{K_E}$ the same as in pTKE ensures that matrix of the solver is diagonally dominant:

$$K_E = \frac{l_m \sqrt{E}}{\nu} \frac{f(Ri)^{\frac{3}{4}}}{\chi_3(Ri)^{\frac{3}{2}}}$$

TKE solver

Vertical profile of Prandtl number

QNSE vs CCH02

eTKE scheme

TKE solver:

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 ・ のへぐ

Turbulent Prandtl number:

$$Prt = \frac{K_m}{K_h}$$

in turbulent schemes:

Louis scheme: TKE scheme:

$$Prt = \frac{l_m}{l_h} \frac{F_m(Ri)}{F_h(Ri)} \qquad Prt = \frac{1}{C_3} \frac{\chi_3(Ri)}{\phi_3(Ri)}$$

$$\Rightarrow Prt(Ri = 0) \equiv Prt_0 = \frac{l_m}{l_h} \qquad \Rightarrow Prt_0 = \frac{1}{C_3}$$

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ()

at

TKE solver

Vertical profile of Prandtl number

QNSE vs CCH02

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Vertical aspect of Prandtl number

$$I_{m/h}^{AY} = \frac{\kappa Z}{1 + \frac{\kappa Z}{\lambda_{m/h}} \left[\frac{1 + \exp\left(-a_{m/h} \sqrt{\frac{Z}{H_{PBL}}} + b_{m/h}\right)}{\beta_{m/h} + \exp\left(-a_{m/h} \sqrt{\frac{Z}{H_{PBL}}} + b_{m/h}\right)} \right]}$$

surface: $I_m = I_h \Rightarrow Prt_0 = 1.0$

 H_{PBL} - PBL height, $a_{m/h}$, $b_{m/h}$, $\lambda_{m/h}$ - tuning constants

TKE scheme: C_3 given for isotropic turbulence: free atmosphere

eTKE uses combination of Louis formalism and TKE formalism *Prt* must match for every stratification:

 $\frac{F_m(Ri)}{F_h(Ri)} = \frac{\chi_3(Ri)}{\phi_3(Ri)} \quad \text{always valid}$

and in free atmosphere $(z \rightarrow \infty)$:

 $\frac{I_m}{I_h} = \frac{1}{C_3}$ requires modification of $I_{m/h}$

Mixing lengths relations TKE solver OCODO OCODE OF Prandtl number QNSE vs CCH02 OCODE OF Pran

Conditions:

free atmosphere:
$$Prt_0 = \frac{l_m}{l_h} = \frac{1}{C_3}$$

surface: $Prt_0 = \frac{l_m}{l_h} = 1$

Solution with use of $I_{m/h}^{AY}$:

$$\frac{\lambda_m}{\lambda_h} = \frac{1}{C_3}$$
$$\frac{\beta_m}{\beta_h} = 1$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

TKE solver

Vertical profile of Prandtl number

QNSE vs CCH02

3D space of degrees of freedom

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ _ 圖 _ 釣�?

TKE solver

Vertical profile of Prandtl number

QNSE vs CCH02 ○●○

3D space of degrees of freedom

◆□ > ◆母 > ◆母 > ◆母 > ● 日 ● ● ●

TKE solver

Vertical profile of Prandtl number

QNSE vs CCH02

3D space of degrees of freedom

C3

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●