TOUCANS -special issues

Ivan Bašták Ďurán, Jean-François Geleyn and Filip Váňa

ALARO-1 working days, Budapest, 16.-19. February 2010
(1) Mixing lengths relations

- Motivation
- Derivation
- Conversion to Ri-form
(2) TKE solver
- pTKE scheme
- eTKE scheme

3 Vertical profile of Prandtl number

- Prandtl number
- Vertical aspect of Prandtl number
- Match of Prt
(4) QNSE vs CCH 02
- 3D space of degrees of freedom

Motivation

Relations between mixing lengths I_{m} (Prandtl type) and L_{K}, L_{ϵ} (TKE)

- enables usage of TKE mixing lengths
(conversion from $L \equiv \sqrt{L_{K} \cdot L_{\epsilon}}$ to I_{m})
- required for derivation of stability functions $F_{m / h}$ in eTKE scheme

Motivation

Derivation of stability functions $F_{m / h}$: condition of equivalence with full TKE scheme:

$$
\tilde{E}\left(L_{K}\right)=\frac{E}{\epsilon\left(L_{\epsilon}\right)}\left[I\left(L_{K}\right)+I I\left(L_{K}\right)\right]
$$

definition of $F_{m / h}$:

$$
F_{m / h}=\frac{\widetilde{K}_{m / h}}{I_{m} I_{m / h} \sqrt{\left[\left(\frac{\partial \bar{u}}{\partial z}\right)^{2}+\left(\frac{\partial \bar{v}}{\partial z}\right)^{2}\right]}}
$$

E - TKE (Turbulence Kinetic Energy), \tilde{E} - TKE at stationary equilibrium I - shear term, II - buoyancy term, ϵ - dissipation
$K_{m / h}$ - exchange coefficients

Derivation

Idea from RMC01 to compare two formalisms: similarity laws:

$$
\begin{aligned}
\tilde{E} & =\alpha \kappa^{2} z^{2}\left[\left(\frac{\partial \bar{u}}{\partial z}\right)^{2}+\left(\frac{\partial \bar{v}}{\partial z}\right)^{2}\right] \phi_{E}\left(\frac{z}{L_{M O}}\right) \\
{\overline{u^{\prime} w^{\prime}}}^{2}+{\overline{v^{\prime} w^{\prime}}}^{2} & =\kappa^{4} z^{4}\left[\left(\frac{\partial \bar{u}}{\partial z}\right)^{2}+\left(\frac{\partial \bar{v}}{\partial z}\right)^{2}\right]^{2} \phi_{m}^{-4}\left(\frac{z}{L_{M O}}\right)
\end{aligned}
$$

κ - von Karman constant, α-constant
$\phi_{E}\left(\frac{z}{L_{M O}}\right), \phi_{m}\left(\frac{z}{L_{M O}}\right)$ - stability functions
$L_{\text {MO }}$ - Monin Obukhov mixing length

Derivation

with TKE schemes:

$$
\begin{aligned}
\tilde{E} & =\frac{C_{K}}{C_{\epsilon}} L_{K} L_{\epsilon}\left[\left(\frac{\partial \bar{u}}{\partial z}\right)^{2}+\left(\frac{\partial \bar{v}}{\partial z}\right)^{2}\right] f(R i) \\
{\overline{u^{\prime} w^{\prime}}}^{2}+{\overline{v^{\prime} w^{\prime}}}^{2} & =\chi_{3}{ }^{2} \frac{C_{K}^{3}}{C_{\epsilon}} L_{K}^{3} L_{\epsilon}\left[\left(\frac{\partial \bar{u}}{\partial z}\right)^{2}+\left(\frac{\partial \bar{v}}{\partial z}\right)^{2}\right]^{2} f(R i) \\
f(R i) & =\chi_{3}(R i)-R i C_{3} \phi_{3}(R i)
\end{aligned}
$$

C_{K}, C_{ϵ} - closure constants
$\chi_{3}(R i), \phi_{3}(R i)$ - stability functions, Ri-gradient Richardson number

Result:

$$
\begin{aligned}
L_{\kappa} C_{\kappa} \chi_{3} & =\frac{\kappa z}{\sqrt{\alpha}} \frac{1}{\phi_{m}^{2} \sqrt{\phi_{E}}} \\
\frac{L_{\epsilon}}{C_{\epsilon}} & =\kappa z \alpha^{\frac{3}{2}} \frac{\phi_{m}^{2} \phi_{E}^{\frac{3}{2}} \chi_{3}}{f(R i)}
\end{aligned}
$$

Conversion to Ri-form

Conditions:

$$
\begin{aligned}
L_{K}= & L_{\epsilon} \text { for } R i=0 \Rightarrow \frac{1}{\alpha^{2}}=C_{K} C_{\epsilon} \equiv \nu^{4} \\
& \text { from CCH02: } \phi_{m}=\frac{1}{\chi_{3}(R i)^{\frac{1}{2} f(R i)^{\frac{1}{4}}}}
\end{aligned}
$$

Assumption:

$$
\phi_{E} \phi_{m}^{2}=1
$$

Prolongation:

$$
\kappa z \rightarrow I_{m}
$$

Conversion to Ri-form

Result:

$$
\begin{aligned}
L_{K} C_{K} & =\nu I_{m} \frac{f(R i)^{\frac{1}{4}}}{\chi_{3}^{\frac{1}{2}}} \\
\frac{L_{\epsilon}}{C_{\epsilon}} & =\frac{I_{m}}{\nu^{3}} \frac{\chi_{3}^{\frac{3}{2}}}{f(R i)^{\frac{3}{4}}}
\end{aligned}
$$

pTKE scheme

pTKE scheme - TKE equation

$$
\begin{aligned}
\frac{\partial E}{\partial t}+A D V(E)= & -\frac{\partial}{\partial z}\left(-K_{E} \frac{\partial E}{\partial z}\right)+\frac{1}{\tau_{\epsilon}}(\tilde{E}-E) \\
& \text { diffusion with AF sch. relaxation }
\end{aligned}
$$

$\tau_{\epsilon}=\frac{E}{\epsilon}$ - dissipation time scale
$K_{E}=-\frac{\overline{E^{\prime} w^{\prime}}+\frac{\overline{\rho^{\prime} w^{\prime}}}{\rho}}{\frac{\sigma}{\partial z}}-$ auto-diffusion vertical coefficient for the TKE

pTKE scheme

FULL LEVEL —— $E_{\text {I }}$
HALF LEVEL $-\widetilde{E}, K_{E}, \tau_{\epsilon}, I_{m}, \beta_{E}$
FULL LEVEL —— E_{I+1}
$\beta_{E}=$ sqrt β - decentering factor for TKE

pTKE scheme

pTKE scheme:

$$
\begin{aligned}
\tilde{E} & =\left(\frac{\tilde{K}_{*}}{\nu I_{m}}\right)^{2} \\
\tau_{\epsilon} & =\frac{\nu^{3} \sqrt{E}}{I_{m}}=\frac{I_{m}^{2}}{\nu^{2} K^{*}} \\
K_{E} & =\frac{I_{m} \sqrt{E}}{\nu}=\underbrace{\frac{K^{*}}{\nu^{2}}} \\
\nu & =\left(C_{K} C_{\epsilon}\right)^{\frac{1}{4}}, K^{*}=\sqrt{K_{m} K_{N}}
\end{aligned}
$$

$K_{N}-K_{m}$ for neutral stratification $(R i=0)$

pIKE scheme

TKE solver:

$$
\begin{array}{|c|}
\hline \widetilde{K}_{m}, \widetilde{K}_{N} \rightarrow \widetilde{K}_{*}=\sqrt{\widetilde{K}_{m}, \widetilde{K}_{N}} \\
\downarrow \\
\begin{array}{|c|}
\hline \widetilde{K}_{*}, E^{0}, I_{m}, \nu \rightarrow \widetilde{E}, K_{E}, \tau_{\epsilon} \\
\downarrow \\
\hline \widetilde{E}, K_{E}, \tau_{\epsilon}, E^{0}, \beta_{E} \rightarrow E^{+} \\
\\
\downarrow \\
\hline E^{+}, I_{m}, \nu \rightarrow K_{*}=\nu I_{m} \sqrt{E^{+}} \\
\downarrow \\
\hline K_{*}, \widetilde{K}_{m}, \widetilde{K}_{*} \rightarrow K_{m}=K_{*} \widetilde{K}_{m} / \widetilde{K}_{*} \\
\hline \quad \downarrow \\
\hline K_{m}, \widetilde{K}_{m}, \widetilde{K}_{h} \rightarrow K_{h}=K_{m} \widetilde{K}_{h} / \widetilde{K}_{m} \\
\hline
\end{array} \\
\hline
\end{array}
$$

eTKE scheme

Differences between eTKE and pTKE: Stability functions:

$$
\begin{aligned}
F_{m}(R i) & =\chi_{3}(R i) \sqrt{f(R i)} \\
F_{h}(R i) & =\frac{\phi_{3}(R i)}{\chi_{3}(R i)} F_{m}(R i)
\end{aligned}
$$

Expression for K_{m} :

$$
K_{m}=L_{k} C_{K} \chi_{3} \sqrt{E}
$$

Relation for ϕ_{m} (influences $L_{K / \epsilon}\left(I_{m}\right)$ conversion):

$$
\begin{aligned}
\text { pTKE }: \phi_{m} & =\frac{1}{f(R i)} \\
\text { eTKE }: \phi_{m} & =\frac{1}{\chi_{3}(R i)^{\frac{1}{2} f(R i)^{\frac{1}{4}}}}
\end{aligned}
$$

eTKE scheme

Modification of $\widetilde{E}, \tau_{\epsilon}$ and K_{E} in eTKE:

 From TKE scheme:$$
\begin{aligned}
\frac{1}{\tau_{\epsilon}} & =\frac{C_{\epsilon}}{L_{\epsilon}} \sqrt{E} \\
K_{m} & =L_{K} C_{K} \chi_{3} \sqrt{E}
\end{aligned}
$$

with $L_{K / \epsilon}\left(I_{m}\right)$ conversion:

$$
\begin{aligned}
\frac{1}{\tau_{\epsilon}} & =\frac{\nu^{3}}{I_{m}} \frac{f(R i)^{\frac{3}{4}}}{\chi_{3}(R i)^{\frac{3}{2}}} \sqrt{E} \\
K_{m} & =\nu l_{m} f(R i)^{\frac{1}{4}} \chi_{3}(R i)^{\frac{1}{2}} \sqrt{E}
\end{aligned}
$$

eTKE scheme

using K_{*} :

$$
K_{*}=\sqrt{K_{m} \cdot K_{N}}=K_{m} \cdot f(R i)^{\frac{1}{4}} \chi_{3}(R i)^{\frac{1}{2}}
$$

we get:

$$
\begin{aligned}
& \frac{1}{\tau_{\epsilon}}=\frac{\nu^{3}}{I_{m}} \frac{f(R i)^{\frac{3}{4}}}{\chi_{3}(R i)^{\frac{3}{2}}} \sqrt{E} \text { different from pTKE } \\
& K_{*}=\nu I_{m} \sqrt{E} \Rightarrow \widetilde{E}=\left(\frac{\widetilde{K}_{*}}{\nu I_{m}}\right)^{2} \quad \text { identical with pTKE }
\end{aligned}
$$

eTKE scheme

Relation for K_{E} modified according to change in τ_{ϵ} in order to keep ratio $\frac{\frac{1}{\tau_{e}}}{K_{E}}$ the same as in PTKE ensures that matrix of the solver is diagonally dominant:

$$
K_{E}=\frac{I_{m} \sqrt{E}}{\nu} \frac{f(R i)^{\frac{3}{4}}}{\chi_{3}(R i)^{\frac{3}{2}}}
$$

eTKE scheme

TKE solver:

$$
\widetilde{K}_{m}, \widetilde{K}_{N} \rightarrow \widetilde{K}_{*}=\sqrt{\widetilde{K}_{m}, \widetilde{K}_{N}}
$$

$$
\widetilde{K}_{*}, E^{0}, I_{m}, \nu, \chi_{3}, \phi_{3} \rightarrow \widetilde{E}, K_{E}, \tau_{\epsilon}
$$

$$
\widetilde{E}, K_{E}, \tau_{\epsilon}, E^{0}, \beta_{E} \rightarrow E^{+} \quad \text { TKE equation - diffusion }
$$

$$
E^{+}, I_{m}, \nu \rightarrow K_{*}=\nu I_{m} \sqrt{E^{+}}
$$

$$
K_{*}, \widetilde{K}_{m}, \widetilde{K}_{*} \rightarrow K_{m}=K_{*} \widetilde{K}_{m} / \widetilde{K}_{*}
$$

$$
K_{m}, \widetilde{K}_{m}, \widetilde{K}_{h} \rightarrow K_{h}=K_{m} \widetilde{K}_{h} / \widetilde{K}_{m}
$$

Prandtl number

Turbulent Prandtl number:

$$
\text { Prt }=\frac{K_{m}}{K_{h}}
$$

in turbulent schemes:

$$
\begin{aligned}
\text { Louis scheme: } & \text { TKE scheme: } \\
\operatorname{Prt}=\frac{I_{m}}{I_{h}} \frac{F_{m}(R i)}{F_{h}(R i)} & P r t=\frac{1}{C_{3}} \frac{\chi_{3}(R i)}{\phi_{3}(R i)} \\
\Rightarrow \operatorname{Prt}(R i=0) \equiv P r t_{0}=\frac{I_{m}}{I_{h}} & \Rightarrow P r t_{0}=\frac{1}{C_{3}}
\end{aligned}
$$

Vertical aspect of Prandtl number

Louis scheme :
vertical profile of Prt given by:

$$
\begin{aligned}
\qquad I_{m / h}^{A Y} & =\frac{\kappa z}{1+\frac{\kappa z}{\lambda_{m / h}}\left[\frac{1+\exp \left(-a_{m / h} \sqrt{\left.\frac{2}{H_{P B L}}+b_{m / h}\right)}\right.}{\beta_{m / h}+\exp \left(-a_{m / h} \sqrt{\frac{2}{H_{P B L}}}+b_{m / h}\right)}\right]} \\
\text { at surface: } I_{m} & =I_{h} \Rightarrow P_{0}=1.0
\end{aligned}
$$

$H_{P B L}$ - PBL height, $a_{m / h}, b_{m / h}, \lambda_{m / h}$ - tuning constants

TKE scheme:
C_{3} given for isotropic turbulence: free atmosphere

Match of Prt

0000000

eTKE uses combination of

Louis formalism and TKE formalism
Prt must match for every stratification:

$$
\frac{F_{m}(R i)}{F_{h}(R i)}=\frac{\chi_{3}(R i)}{\phi_{3}(R i)} \quad \text { always valid }
$$

and in free atmosphere $(z \rightarrow \infty)$:

$$
\frac{I_{m}}{I_{h}}=\frac{1}{C_{3}} \quad \text { requires modification of } I_{m / h}
$$

Match of Prt

0000000

Conditions:

$$
\begin{aligned}
\text { free atmosphere: } & P r t_{0}=\frac{I_{m}}{I_{h}}=\frac{1}{C_{3}} \\
\text { surface: } & P r t_{0}=\frac{I_{m}}{I_{h}}=1
\end{aligned}
$$

Solution with use of $I_{m / h}^{A Y}$:

$$
\begin{aligned}
& \frac{\lambda_{m}}{\lambda_{h}}=\frac{1}{C_{3}} \\
& \frac{\beta_{m}}{\beta_{h}}=1
\end{aligned}
$$

3D space of degrees of freedom

3D space of degrees of freedom

3D space of degrees of freedom

$$
\begin{array}{rr}
\text { QNSE } & \ddagger \\
\text { QNSE_e }_{2} & \ddagger
\end{array}
$$

