Regional Cooperation for Limited Area Modeling in Central Europe



# Status of data assimilation at CHMI

#### Alena Trojáková







- Overview of the progress since June 2012
- Evaluation of DA scheme
- Questions
- Case study



- The study of the evolution of error dispersion spectra in successive steps of DFI Blending, 3DVAR, Blend-Var simulated by ensemble - Antonin's talk
- First test of water vapor regimes verification using SAL - Patrik's poster on ALADIN/HIRLAM workshop
- Radiance data assimilation Patrik's talk
- Evaluation of DA scheme
  - background error statistics
  - observation and background errors diagnostics

## **Background error statistics**



Background error statistics are essential component for the 3DVAR. There are several typical characteristics which are usually examined, e.g. standard deviations which correspond to the expected amplitude of background errors, correlations (or length-scales) which determines how local observation are spatially filtered and propagated to the neighborhood and cross-covariances between the different variables (divergence, vorticity, temperature, surface pressure and humidity) which usually reflect physical couplings between different variables, e.g. geostrophic balance.

The NMC lagged statistics were compared with ensemble based, which should provide better representation of the initial errors and the analysis effects (Berre etal 2006)



#### **Background error statistics**



#### The ensemble based statistics for 00,06,12,18UTC and all were examined.



## **Background error statistics**



#### The ensemble based statistics for 00,06,12,18UTC and all were examined.



Mostly quantitative differences have been found, (e.g. bigger standard deviations and cross-covariances for 12UTC and 18UTC), which complicated an inter-comparison and the impact study have been carried out.

# **Evaluation of DA scheme**



The upper-air analysis scheme was of our main interest with aim to replace the operational DFI blending scheme by 3DVAR based technique which uses observation directly.

- 3DVAR schemes with different B matrix were tested in simplified framework, which consist of an experiment without assimilation cycling !
- aim is to quickly check performance of the analysis scheme and to get the best scores up to +6H forecast at least
- tested periods 1-14 February 2013 (and 1-14 July 2012)
- observation assimilated (data from OPLACE only)

SYNOP  $(\phi)$ 

**TEMP** (T, q, wind)

• verification method - scores against SYNOP&TEMP (VERAL)

The impact of the background errors was studied for ensemble based B (REDNMC=1) for production +48H forecasts starting from 00 and 12UTC

- Y86 ensemble B sampled valid at 00UTC only (ENS\_00)
- Y84 ensemble B sampled valid at 12UTC only (ENS\_12)
- Y81 ensemble B sampled for all analysis times (ENS\_all)

## Impact of ensemble based B



**RMSE** differences of the scores against observations for 00UTC forecasts red areas denote a positive impact of ENS\_00 (top), ENS\_12 (bottom) with respect to ENS\_all, white circles significance 95% two-side confidence int



## Impact of ensemble based B



**RMSE** differences of the scores against observations for 12UTC forecasts red areas denote a positive impact of ENS\_00 (top), ENS\_12 (bottom) with respect to ENS\_all, white circles significance 95% two-side confidence int



# Impact of ensemble based B



- The impact studies showed rather small impact (although many times statistically significant).
- Impact of some parameters has correlation with the value of standard deviation, e.g. temperature (the higher errors the bigger positive impact)



It is difficult to make conclusions as

- the quantitative differences hamper a fair experimental evaluation (and at least appropriate tuning of the background standard deviations is needed)
- the design of the experiments (use of the simplified framework = test without assimilation cycling) might be questionable

# **Errors diagnostics**



A posteriori diagnostics of the observation and background errors proposed by Desroziers et al 2005 showed that the background errors are overestimated while observation ones are underestimated.

| Exp  | ENS_all |         |         |  |
|------|---------|---------|---------|--|
| Var  | cases   | $r_o$   | $r_b$   |  |
| q    | 10321   | 0.61941 | 1.21313 |  |
| Т    | 17424   | 0.84735 | 1.53390 |  |
| Ek   | 17655   | 0.75862 | 0.78490 |  |
| Mean | 45400   | 0.76589 | 1.21538 |  |

**Table 1:** The ratios of diagnosed/predefined standard deviations for observations  $r_o$  and background  $r_b$ 

The impact of the errors tuning was studied in the simplified framework for ensemble based ENS\_all (ad-hoc selection!) for 1-14 February 2013 00UTC

| Exp  | Y88   |         |         | Y89   |         |         | Y90   |         |         |
|------|-------|---------|---------|-------|---------|---------|-------|---------|---------|
| Var  | cases | $r_o$   | $r_b$   | cases | $r_o$   | $r_b$   | cases | $r_o$   | $r_b$   |
| q    | 10327 | 0.67346 | 1.11380 | 10327 | 0.67063 | 0.94799 | 10327 | 0.64998 | 0.85763 |
| Т    | 17428 | 1.00326 | 1.62716 | 17429 | 1.06875 | 1.54322 | 17430 | 1.07456 | 1.45898 |
| Ek   | 17657 | 0.88722 | 0.78246 | 17660 | 0.94684 | 0.70839 | 17660 | 0.95286 | 0.65623 |
| Mean | 45412 | 0.89190 | 1.23946 | 45416 | 0.94298 | 1.14605 | 45417 | 0.94459 | 1.07313 |

- y81 Dynamical adaptation + 3DVAR ENS\_all
- y88 REDNMC=1.2 and SIGMAO\_COEF=0.8
- y89 REDNMC=1.5 and SIGMAO\_COEF=0.7
- y90 REDNMC=1.7 and SIGMAO\_COEF=0.67

## Impact of errors tuning









The upper-air analysis scheme was of our main interest with aim to replace the operational DFI blending scheme by 3DVAR based technique which uses observation directly.

- only observation conventional data (SYNOP & TEMP) assimilated (data from OPLACE only)
- 3DVAR schemes with different B were tested in the simplified framework

no clear guidance of the background errors sampling was obtained

• the observation and the background errors tuning was tested

the observation and the background errors tuning showed potential to improve the analysis mostly

#### Warning:

1) SIGMA\_COEF have to be set in BATOR, screening and minimization namelists !

2) SIGMA\_COEF is not applied to SYNOP and partially also

TEMP observations (see bator\_ecritures.F90 and bator\_init.F90) in CY36T1!





• the goal is to set-up a 3DVAR for further testing (with more observations and the full assimilation cycling)

we have obtained quite encouraging results

**RMSE** differences of the scores against observations for **OUTC** forecasts red areas denote a positive impact of the **3DVAR** set-up

(ENS\_all & REDNMC=1.7 & SIGMAO\_COEF=0.67 ) with respect to dynamical adaptation, white circles significance 95% two-side confidence interval





- What background errors are used and why ?
- How did you evaluated the background errors ?
- What are your experiences or future plans regarding:
  - background error sampling strategies (seasonal, daily dependency) ?
  - observation and background error tuning ?
- What is an interaction of REDNMC and grid-point background errors (sigma\_b) of the day (from ARPEGE ENS\_DA) ?

# Importance of data assimilation



Case study in high resolution of 2.2km for the the flood event of 1st July 2013







#### Thank You for Your attention !