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1 Introduction

In the ALADIN 3D-VAR data assimilation system, for the time being, backgrounar&are considered to be
constant in time, however we all know that background fastecenight be of variable quality depending on
the weather situation. Kalman Filter is an approach to tateaccount the time dependency of background
errors in the analysis by ensuring the time evolution of thekground error covariance matrix from one
analysis time step to another. The implementation of Kalfi#dar, however, is extremely expensive in large
dimension systems such as numerical weather predictionRNWodels, which excludes the possibility of a
real time operational application with the present comsutEhe so called Ensemble Kalman Filters aim to
reduce the cost of computing the time evolution of the bamkigd error covariance matrix. They all estimate
it from a small size ensemble of background forecasts bterdifit approaches exist for the generation of
initial perturbations for them. At the Hungarian Meteogital Service (HMS) the so called Ensemble
Transform Kalman Filter (ETKF) has been chosen for impletation. Details about its theoretical
background and practical implementation are presentdusrpaper.

In the following we summarize the basic concepts of datardkgtion in general and Kalman Filter methods
in particular. In Section 3 the theoretical background oKETs detailed, while in Section 4 its practical
realization is shown.

2 Dataassimilation and Kalman Filter

Data assimilation systems provide initial conditions ocalgsis () for NWP models using the actual
observationsy) and a background forecast) valid at the analysis time as primary information for the
analysis procedure. Optimal least-square and variatidaial assimilation methods compose this analysis
according to the so-called BLUE (Best Linear Unbiased Ediiom) estimation:

Ta =z + K(y — H(zy)) (BLUE)
whereK is the Kalman gain:
K=PH (HP/H' +P,)™ "
In (BLUE), H denotes the observation operator d@hdts linearized around the background staje

(H = %—7;(95 ). These operators enable the representation of the madeladtthe space of the observations.

The P; and P, background and observation error covariance matricededneed as follows:

Py :=E(egey') and P, := E(coe, ), (1)
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whereE(-) denotes the expected valug, = =; — ¢ ande, = H(x;) — y stand for the background and
observation errors respectively whergis the unknown true state of the atmosphere. Further asgumspin
the errors are that:

1. Each error is of expected value of zero, Ege ;) = E(e,) = 0 (the corresponding estimate is
unbiased, it does not contain systematic error).

2. Background and observation errors are uncorrelatedy{&<,) = 0.

Similarly to (1) the error covariance matrix of the analysa® be defined as
P, = E(saz—:aT), (2

wheree, = z; — x,. In an assimilation system based on (BLUE), the followirigtien holds between the
analysis and the background error covariance matrices:

P, = (I - KH)Py, 3)

wherel denotes the identity matrix (Bouttier and Courtier [2])1 us denote the degree of freedom of an
NWP model byn (n =~ 107) and the number of observations pyp ~ 10* — 10°). Thenz; andz, are
vectors of size, y is a vector of size, the covariance matrices are of sizex n, the Kalman gaink is a
matrix of sizen x p, and the linearized observation operakbiis a matrix of sizep x n.

The Py background error covariance matrix is often assumed to bstant in time in the data assimilation
systems, however, it is well known that background erropedd a lot on the actual weather situation,
therefore it is desirable to release this consideratiom. mhin idea of Kalman Filter methods is to update
matrix P, at each analysis step so that equations (BLUE) and (3) altvalgs The “original” Kalman Filter
method was introduced by Rudolf Emil Kalman in 1960 (see Kalif®]). He has shown that taking into
account the same assumptions as above, the followingarledin be obtained between the covariance
matricesP; and P, (see Kalman [9] and Kalnay [10, Chapter/Section 5.6]):

k+1 k+1pk oy rk+1 T k+1
Pt = M PEME + PR (KF)

where indext denotes thé'" analysis step)/ is the linearized propagator of the nonlinear mati¢l(i.e. a
matrix of sizen x n) and P, is the covariance matrix of the linear model error (contaiveslinearization
error as well). TheP,, matrix is usually neglected in practice, however, thereadse efforts on its estimate
(see e.g. Tremolet [11]).

However the following problems arise for the realizatiortra algorithm (KF):

— The original Kalman Filter is only applicable for lineA = M model. In order to extend the method
to nonlinear models, the Extended Kalman Filter has beeodnted, where the nonlinear operatat
is assumed to be linearized around the background state.

— Since the degree of freedom of atmospheric models<s107, the computation of (BLUE) cannot be
performed directly. Thus, the variational algorithms hbeen introduced where the Kalman gain
matrix K is constructed implicitly (Courtier et al. [3]). Therefor& is not available explicitly for
computing the new error covariance matfix from formula (KF).

— Determination of matrix’; according to formula (KF) would need~ 107 integration with the tangent
linear model and its adjoint (which is the transpose of tingéat linear model operator).

Several approximate methods have been proposed in ordgstads these implementation problems. They
might come from different approaches but all of them aim tluce the dimensions used in the the Kalman
Filter equation (KF). The so-called Reduced Rank KalmateFideveloped at ECMWF uses Hessian singular
vectors to define a low-dimensional subspace wheré’hmatrix is evolved (Fisher [4]). Other approximate
Kalman Filter methods are based on the ensemble technigeeeire low-dimensional subspace is defined
by a small size ensemble (Ensemble Kalman Filter (EnKF) arsgBble Transform Kalman Filter (ETKF)).



3 Ensembletechniquesfor Kalman Filtering

Furthermore we focus on the Ensemble Kalman Filter and tlsefable Transform Kalman Filter methods
more in details.

3.1 Ensemble Kalman Filter (EnKF)

In the case of EnKF the error covariance matri€gsand P; are obtained front (k < n) ensemblenembers
(i.e. from a statistical population). Matrik, can be estimated fdr ensemble members as follows (see
Houtekamer and Mitchell [8], Evensen [6, Chapter 2.4.2]ljjGs et al. [5]):

k
Z Ta,j — wa,] fa)—l—- (4)

Let us consider the following
1
Za = [—1 (Za,la Za,25 -+ 7Za,k)

matrix of sizen x k, wherez, ; := z,; — T, (j = 1, ..., k) are the analysis dispersions, i.e. the differences
between thg'*® memberz, ; and the ensemble averagg Observe that with this notation the covariance
matrix P, of the analysis error can be written from (4) as:

P, = 7,77, (5)

which is the product of matri¥, and its transpose. Then one can assume that the backgrapmtgions are
obtained by integrating the analysis dispersions withitiesak model, that is,

Zy=M2, (EnKF)

and then
Pr=27;Z} =MZyZ,M" = MP,M",

hence, we get back the formula (KF) of the Kalman Filter (aegihg the model error's covariance matrix
Pyr). The advantage of this method is that oklintegrations are needed in formula (EnKF). It is remarked
that the Ensemble Kalman Filter is one of the so-cadledare-root filtersbecause?, is the mathematical
square-root ofP, according to formula (5) (see Tippett et al. [12]). Since

ZZf foj :szf’j_ng =Ty ——kxf_O
Jj=1 Jj=1 Jj=1

the average of the dispersiong; is zero, hence, they are linearly dependent. Thereforeatileof matrix Py

is only k — 1. This means that we estimate matftx of sizen x n ~ 107 x 107 by a matrix with

“information” of £ — 1 (this phenomenon is usually called rank deficiency). It castown that EnKF

method is optimal in the sense of formula (3) only if the oliaBons are also perturbed. It is also mentioned
here that there are also other consequences as well, fanagstthe collapse of ensemble members, sampling
noise due to the small number of ensemble members, longidestzorrelation between them, etc.

=
?vlr—‘

3.2 Ensemble Transform Kalman Filter (ETKF)

The advantage of ETKF is that, unlike the Ensemble Kalmaeif-ithe observations are not to be perturbed in
order to get an optimal estimate. The basic idea behind EEHKlfait there exists a relationship between the
dispersions of the analysis and the dispersions of the lbaghkd, that is

Zoy = 2T, (6)
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whereT’ denotes the (for the time being unknown) transformatiorrisnat size £ x k describing this
relationship. MatrixI” can be determined from the following assumptions:

— the method is optimal in the sense of formula (3),

— the matrix of the dispersions is the square-root of the gpacind error covariance matrix.

Hence, we are seeking matfixunder the following assumptions:

Zy = Z;T,
-1

P, = (I~ KH)P;, where K =P;H' (HP;H  +P,) | (ETKF)

Pr=7;7;.

From formulae (ETKF) matri€’ can be determined as (for the derivation see in Bishop etpd. |
T=0CT+1)2 (7)

wherel is the identity matrix and
Z{H Py 'HZp =CICT.

Thus, matrixC' contains the normalized eigenvectors of the maﬂriTxHTPo—lHZf, and the diagondrl

matrix contains the corresponding eigenvalues. Mdixdefined by formula (ETKF) contains the dispersions
to be added to the analysig computed from the control member (eag.;). The new background members
xS are determined by integrating the new analysis “ensembthberse, ; with the model { =1, ..., k).
From their dispersions the new values of matri€gsand P, can be computed, and so on. The algorithm is
shown inFigure 1

Let us make the remark that the ETKF method has also a gresficamce in the field of observation targeting
due to its potential to compute a future analysis error damae matrix through the transform (6) and the
estimation (5). It namely makes possible to minimize thdymmmand the forecast errors of a later time instant
(called respectively the targeting and the verificatioreimwith respect to the assimilation of possible adaptive
elements of the observing system (drop sondes, aircradt$, e

4 Realization of Ensemble Transform Kalman Filter at the Hungarian
M eteorological Service

In this section we give an overview on the most importantuiesst about the practical realization of Ensemble
Transform Kalman Filter at our Service in the framework & tkhLADIN 3D-VAR data assimilation

systenWe remark and warmly acknowledge that the idea behind thdewkalization of ETKF at the HMS
was originally suggested by Sandor Kertész. Following tgerghm of ETKF shown in Figure 1, one should
perform the following steps:

1. Build matrixZ/ H' P, 'HZ;
2. Solve the eigenvalue probleffy H' P, ' HZ; = CT'C'" (normalize the eigenvectors)

Create transformation matrix = C/(I" 4 I)~%/2
Construct analysis dispersions wWith = Z ;T

Compute new analysis members with; = z, + 24, j = 1,...,k

o g M W

Generate new ensemble members wiit)” = M(z,;),j =1, ...k
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Figure 1: Algorithm of Ensemble Transform Kalman Filteriqgsanalyisz, computed from the control member
.’L’f’l).

7. Compute the new error covariance ma]iﬁ?@w.

Hereafter the practical realisation of these steps willtefly explained with special emphasis on the
technical details of the ALADIN data assimilation system.

4.1 Computation of matrix Z; H' P, ' HZ;
Let us observe that matrix/ H ' P, H Z can be written as
ZIH"P'HZy =VTV with V=P, Y2HZy, (8)

where matrixl/ is of sizep x k. Matrix P, is diagonal containing the variations (i.e. the squareb®f t
standard deviations) of the observation error. MakfiX ; can be written as follows:

1 1
HZf = H\/ﬁ (Zf’l,Zﬁg, ...,Zﬁk) = m(HZfJ,HZﬁQ...,HZfﬁ),
where the term#iz; ; (j = 1, ..., k) can be estimated as
Hzpj = H(xy; —Tp) = H(zg,;) — H(Ty).

H(xs ;) and’H (T ;) can be written as the difference between the observationhensb-called first guess
departure (i.e. the difference between the observatiorttendackground) (Kertész, personal



communication). These values are stored in the ALADIN olagéon databaseopB) by namesbsval ue
andf g_depar . Therefore, one can further write that

H(zsj) =y — (y — H(xy,;)) = obsval ue —f g_depar.

Then the entries of matrik are )

— (H(wp5) —H(@s)),
75

wheres; denotes thg'® entry of matrixP,, that is, the standard deviation of tji¢ observation error stored
in theoDB asobs_er r or . Thus, the above formula can be written using the varialfiéseaoDB as

[(obsval ue —fg_depar) — (obsval ue —f g_depar)]/ obs_error

4™ ens. member average 4™ ens. member

= [(fg_depar) — (fg_depar)] / obs_error

average  jth ens, member ;™ ens. member

According to the above formula, new files, representing therows of matrixt’ = P, 1/2

constructed in the following way:

HZ;, are

V(i.g) = (P, PHZp)(i, j) =
R rr )0 ©
1 1

~ Vk_1o0bs_error (i [f g_deparz(i) - fg_depar,, (i),

where the valuebg_depar andobs_err or are to be obtained from theDB.

The content obDB can be read with the so-calledibvi ewer which is based osgl requests defining the
parameters we are interested in (in our dagedepar andobs_er r or). The output obdbvi ewer isa
simpleasci i file containing the requested values. Thee depar andobs_er r or variables inoDB are
filled during thesCREENING Ii.e. the quality control of the observations. This measas itm order to get all the
necessary information, tteCREENINGprocedure should be run+ 1 times taking the ensemble members
xy; and their average s as background fields. Having a look at matvixdefined in (8), one expects it to be
computed only for those measurements which were accepttklguality control (i.e. active measurements)
of eachsCREENINGruns. Consequently, we are interested only inftbe depar values corresponding to the
intersection of the active measurements. As a summanhécamputation of matri)ZfTHTPo‘lHZf the
following subsequent steps should be done:

1. RunthescREENINGtakingxz; (j = 1, ..., k) andz; as background fields:(+- 1 SCREENINGS
altogether)

2. Read eacloDB resulted from eacBCREENING(useodbvi ewer andsql request files)
3. Compare th®DbB REPORB and collect the observations which appear in all of them

4. Save the values é6fg_depar andobs_err or only for these observations for each background field
xy; andzy (this resultsk + 1 files)

5. With the help of the above files comput#:, j) from formula (9) and save thiecolumns of matrixt’
in k different files.



Then matrixV "V should be computed. Using the definition of the transpose
V(i j) = V(j,1),
the (4, )" entry of matrixV "V can be determined as
N

N
VIV)(@5) =Y VIEDV(LG) =Y VIV (L),
=1 1=1
whereN denotes the size of the files containing the columni gfe. the number of the common
measurements. We should add the product of'thkne of the:*® and;'" files. The result can be written to a
new file, which now contains the matrix'V = Z[ H' P, HZ; needed for the eigenvalue problem.

4.2 Solving the eigenvalue problem

The matrixZJTHTPO—lHZf is of sizek x k and it is real-valued and symmetric, therefore, its eigkmsmare
real as well. In ALADIN we can use subroutimes.F for solving the eigenvalue problem. PORTRAN code
should be written which reads the data from the file contgitire elements of matrig [ H' P, ' HZ; to an
array and then callrG.F in order to determine the eigenvectors and eigenvalues.aiMthe attention that the
definition of the transformation matrix refers¢dandI’ as matrices obtained from formula

Z{H'P;'HZ; = CIC,
however, routinRG.F solves the eigenvalue problem:
Z{H'P;'HZy =CTC™.

This means that in order to be consistent with the derivadfdhe transformation matri¥’, the equality
CT = C~" should hold, that is(’ should be an orthogonal matrix. Hence, the column§ ¢te. the
eigenvectors of matri)ZfTHTPo—lHZf) should build an orthonormal system. Therefore, columns of
should be normalized after callirrg.F.

4.3 Derivation of the transfor mation matrix

Although the transformation matrik was initially proved to be computed as
T =C(@+1)7Y2,

we will use another form suggested in Wei et al. [13]. Thewstubthat the analysis dispersions; are not
centered about their mean, not even when the backgrounersispsz; ; are centered about their mean. In
order to centet, ; about their mean, a so-called simplex can be applied. Tiseyshlowed that a possible
simplex, having the necessary properties, is the métfixHence, matrixI” can be obtained as

T=0T+10)"12CT,

whereC denotes the matrix of the normalized eigenvectors, whillee matrix of eigenvalues, ards the
identity matrix. The latter two are diagonal, therefores glower of their sum can be obtained easily. The
(i,7)™ entry of matrixT" can be written as

. 1 . .
T(Zvj) - ; myl(l)yl(])v (10)
where),; is thel'" eigenvalue and, (i) is thei*? entry of thel'" normalized eigenvectoi,(j = 1, ...,k and N
denotes the length of the files). From the point of view of #ization this means that tR®@RTRAN
program (i) solves the eigenvalue problem in order to dategrthe eigenvectors and eigenvalues of matrix
ZfTHTPO‘lHZf, and (ii) computes the transformation matfixdefined by formula (10) from the above
obtained eigenvectors and eigenvalues.




4.4 Construction of the analysis dispersions

The next step is the computation of mat#y of the analysis dispersions by the formula

Zo = 74T,
with )
Zy = ZF1y 259y s 2 k), 11
f \/m(f,l 12 1) (11)

wherezs ; :=xy; — Ty (j = 1,..., k). Let us observe that the consta{%:1 is on both sides of equation (11),

because it appears in both matriceésand Z,. Dividing both sides of the eguation by this constant, wembt
that

(Za,1, 20,25 -+ Zak) = (215212, -5 25k) T
that is,

Zay(i) =Y zp()T(1,5)  forallij=1,..k, (12)
=1

~

wherez, ;(i) denotes theé'" entry of thej'" analyis dispersion vector. Formula (12) can be written #svis:

AT, ) +2zp2(D)T(2,5) + - + 2p (DT (K, j)
12T, 5) +2p22)T(2,5) + - + 2p.(2)T (K, j)

Zq(n) = zp1(n)T(1,7) + 252(n)T(2,5) +- - + zr(n)T(k, 7).
—— ——————

Za,j ZflT(lvj) ZfQT(27]) Zf,kT(kvj)
One can see that it is enough to multiply all elements in files(j = 1, ..., k) by the entries of the
transformation matrix" in order to get the analysis dispersion fitgs; (j = 1, ..., k). In order to fasten this

procedure, each script computing tji€& analysis dispersion can be run on a different processarighall
scripts at the same time), since they are independent fremaéer. It is remarked that one can obtain the
averager ; and the differences from it (i.e. the background dispessigry) from the available background
fieldsx ; for instance by using a program similar to the subrounenD.F, which is a simple routine for
adding two ALADIN files.

4.5 Computation of the new values

New analysis members. After determining the analysis dispersions;, the new analysis members are
obtained by
Taj = Tq+ Zay, J=1,..,k

wherezx, denotes the analysis field computed by a data assimilatidhati€e.g. ®-vAR) from the control
ensemble member (e.g. fram ;).

New ensemble members. The new background fields are obtained from integrating éve analysis
ensemble members, ; with the modelM as

k k ;
it = My ;) forallj=1,.. k.



New background error covariance matrix (Py). A new sample of background errors can be estimated as
the difference of the ensemble members from their mean &taice:

or, also as the differences between the ensemble membarsahes:

(5]' =Tfi— Tfl, i=1,...,kandl =1,.... k.

The Py background error statistics needed for the ALADIN-8AR run can be then computed by tRESTAT
program, which was developed at ECMWF and then adapted toDANAavailable from Météo-France or the
Hungarian Meteorological Service).

S5 Summary

In the present paper we showed the theoretical backgrouththarpractical realization of Ensemble
Transform Kalman Filter method as suggested by Sandor $&zdagthe Hungarian Meteorological Service.
The big advantage of ETKF is that its application resultstolependent background errors and also an
ensemble system at each analysis time without the replatteshthe already existing data assimilation
method (e.g. B-VAR). The main difference between the computational time of EaKd this kind of
realization of ETKF is the number of minimizations needeeaxiwhile in ETKF only one analysis step (e.g.
3D-VAR) is needed, in EnKF an analysis should be obtained from eackgbound field ¥ altogether). On the
other hand, in ETKF we should run+ 1 SCREENINGS, which means that we could "only" save the time of
the & minimization steps (which is still meaningful). The headr&T KF is the transformation matrix, which
should be computed in addition compared to EnKF on the otlwed hHowever its derivation, is still less
computer intensive than a>3vArR minimization.

At the moment only the basic realization of ETKF is ready at&Me do not have any cycling yet and
therefore we are unable to show any results. Nevertheles® spen problems can be mentioned: How does
the sampling noise, related to the small size of ensembtietrenchoice of the same lateral boundary
information effect the result obtained by ETKF? In order nswer these (and other) open issues, we plan to
implement a real cycling with ETKF and investigate the baokigd error statistics with the help of
diagnostics.
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