### Cloud reunification in the CSD context

Luc Gerard

Royal Meteorological Institute of Belgium

March 2019

Symmetric pdf of s, departure from mean saturation excess  $Q_c$ :  $s = \breve{q}_c - Q_c \equiv (q_t - q_s) - (\overline{q_t} - \overline{q_s})$ : width  $b = \sigma\sqrt{6} = \overline{q_s}(1 - U_c)$ , ( $U_c$  is critical relative humidity).

Symmmetric pdf of s, departure from mean saturation excess  $Q_c\colon s=\check{q}_c-Q_c\equiv (q_t-q_s)-(\overline{q_t}-\overline{q_s})\colon$  width  $b=\sigma\sqrt{6}=\overline{q_s}(1-U_c),\qquad (U_c\text{ is critical relative humidity}).$ 





Symmetric pdf of s, departure from mean saturation excess  $Q_c$ :  $s = \breve{q}_c - Q_c \equiv (q_t - q_s) - (\overline{q_t} - \overline{q_s})$ : width  $b = \sigma\sqrt{6} = \overline{q_s}(1 - U_c)$ , ( $U_c$  is critical relative humidity).





 $Q_c < 0$ : unsaturated grid-box

$$Q_c=0$$
: just saturated mean grid-box  $\iff \overline{q_t}=\overline{q_s},\ N=0.5.$ 

Symmetric pdf of s, departure from mean saturation excess  $Q_c$ :  $s = \breve{q}_c - Q_c \equiv (q_t - q_s) - (\overline{q_t} - \overline{q_s})$ : width  $b = \sigma\sqrt{6} = \overline{q_s}(1 - U_c)$ , ( $U_c$  is critical relative humidity).





 $Q_c < 0$ : unsaturated grid-box

$$Q_c = 0$$
: just saturated mean grid-box  $\iff \overline{q_t} = \overline{q_s}, \ N = 0.5.$ 

more cloud at  $\overline{RH}_t = \overline{RH} + \frac{\overline{q_c}}{\overline{q_s}} = 1$  requires a skewed pdf !

Symmetric pdf of s, departure from mean saturation excess  $Q_c\colon s=\breve{q}_c-Q_c\equiv (q_t-q_s)-(\overline{q_t}-\overline{q_s})\colon$  width  $b=\sigma\sqrt{6}=\overline{q_s}(1-U_c),\qquad (U_c \text{ is critical relative humidity}).$ 





 $Q_c > 0$ : saturated mean grid-box

 $Q_c \geq b$ : overcast, N = 1.

Symmetric pdf of s, departure from mean saturation excess  $Q_c$ :  $s = \breve{q}_c - Q_c \equiv (q_t - q_s) - (\overline{q_t} - \overline{q_s})$ : width  $b = \sigma\sqrt{6} = \overline{q_s}(1 - U_c)$ , ( $U_c$  is critical relative humidity).





$$Q_c > 0$$
: saturated mean grid-box  $Q_c \ge b$ : overcast,  $N = 1$ .

$$\overline{q_t} - \overline{q_s} = b \iff \overline{RH_t} = 1 + b = 1 + \overline{q_s}(1 - U_c) = 2 - U_c$$
  
e.g.  $U_c = 0.7$  and  $\overline{RH} = 1$  requires  $\overline{q_c} = 0.3$   $\overline{q_s}$  for  $N = 1$ 

Xu-Randall 1996: Nightarrow1 as soon as  $\overline{RH} 
ightarrow$ 1, whatever be  $\overline{q_c}$ 

$$N = (\overline{RH})^r \Big[ 1 - \exp\{-rac{lpha \ \overline{q_c}}{ig(\overline{q_s}(1 - \overline{RH})ig)^\delta} \Big] \qquad ext{with } \overline{RH} = rac{\overline{q_v}}{\overline{q_s}}$$

Xu-Randall 1996: Nightarrow1 as soon as  $\overline{RH} 
ightarrow$ 1, whatever be  $\overline{q_c}$ 

$$N = (\overline{RH})^r \Big[ 1 - \exp\{-\frac{\alpha \overline{q_c}}{(\overline{q_s}(1 - \overline{RH}))^{\delta}} \Big]$$
 with  $\overline{RH} = \frac{\overline{q_v}}{\overline{q_s}}$ 

Tuning done with  $U_c > 0.9$  and  $\overline{RH} = N + (1 - N)U_c$  ... results in too binary cloud fraction

Xu-Randall 1996: Nightarrow1 as soon as  $\overline{RH} 
ightarrow$ 1, whatever be  $\overline{q_c}$ 

$$N = (\overline{RH})^r \left[ 1 - \exp\{-\frac{\alpha \overline{q_c}}{(\overline{q_s}(1 - \overline{RH}))^{\delta}} \right]$$
 with  $\overline{RH} = \frac{\overline{q_v}}{\overline{q_s}}$ 

Tuning done with  $U_c > 0.9$  and  $\overline{RH} = N + (1 - N)U_c$  ... results in too binary cloud fraction

possible cure: prevent overcast at (nearly) no suspended condensate

$$\textit{N} = (\overline{\textit{RH}})^r \Big[ 1 - \exp\{-\frac{\alpha \ \overline{q}_{csus}}{\max[\epsilon_1, \left(\overline{q}_s - \overline{q}_v + \max(0, \text{QSUSN} - \overline{q}_{csus})\right)]^{\delta}}\} \Big]$$

Xu-Randall 1996: Nightarrow1 as soon as  $\overline{RH}
ightarrow$ 1, whatever be  $\overline{q_c}$ 

$$N = (\overline{RH})^r \Big[ 1 - \exp\{-rac{lpha \ \overline{q_c}}{ig(\overline{q_s}(1 - \overline{RH})ig)^{\delta}} \Big] \qquad ext{with } \overline{RH} = rac{\overline{q_v}}{\overline{q_s}}$$

Tuning done with  $U_c > 0.9$  and  $\overline{RH} = N + (1 - N)U_c$  ... results in too binary cloud fraction

possible cure: prevent overcast at (nearly) no suspended condensate

$$N = (\overline{RH})^r \Big[ 1 - \exp\{-rac{lpha \ \overline{q_{csus}}}{\max[\epsilon_1, \left(\overline{q_s} - \overline{q_v} + \max(0, \operatorname{QSUSN} - \overline{q_{csus}})\right)]^{\delta}}\} \Big]$$

...and consider  $\overline{q_{csus}}$  a maximum mean grid-box condensate, e.g.

$$\overline{q_{csus}} = N \cdot \widehat{q_{csus}}(\overline{\omega}, \alpha_i, ...)$$

#### More about cloud scheme

- Both XR and Smith schemes valid *exclusively for stratiform* clouds: others where excluded from the datasets.
- Any cloud produced from elsewhere should have associated condensation taken into account, e.g.
  - Shallow convection
    - Sub-inversion enhanced condensation
    - Deep convective cloud, parameterized or not

Let  $\overline{q_{cs}}$  be the condensate poduce by the stratiform cloud scheme.

• TOUCANS produces  $N_{sc}$ , up to now not further used.

Let  $\overline{q_{cs}}$  be the condensate poduce by the stratiform cloud scheme.

- TOUCANS produces  $N_{sc}$ , up to now not further used.
- Associated condensate can be estimated by assuming a given suspended condensate:

$$\overline{q_{csc}} = N_{sc} \cdot \text{QSUSSC}, \qquad \overline{q_{c1}} = \text{max}[\overline{q_{cs}}, \overline{q_{csc}}]$$

Let  $\overline{q_{cs}}$  be the condensate poduce by the stratiform cloud scheme.

- TOUCANS produces  $N_{sc}$ , up to now not further used.
- Associated condensate can be estimated by assuming a given suspended condensate:

$$\overline{q_{\textit{csc}}} = \textit{N}_{\textit{sc}} \cdot \mathsf{QSUSSC}, \qquad \qquad \overline{q_{\textit{c1}}} = \mathsf{max}[\overline{q_{\textit{cs}}}, \overline{q_{\textit{csc}}}]$$

... But this would be too easy !

Let  $\overline{q_{cs}}$  be the condensate poduce by the stratiform cloud scheme.

- TOUCANS produces  $N_{sc}$ , up to now not further used.
- Associated condensate can be estimated by assuming a given suspended condensate:

$$\overline{q_{csc}} = N_{sc} \cdot \mathsf{QSUSSC}, \qquad \overline{q_{c1}} = \mathsf{max}[\overline{q_{cs}}, \overline{q_{csc}}]$$

- ... But this would be too easy!
- Autoconversion has a  $q_{\ell cr}$ ,  $q_{icr}$  that will precipitate these shallow condensate that had to remain suspended

Let  $\overline{q_{cs}}$  be the condensate poduce by the stratiform cloud scheme.

- TOUCANS produces  $N_{sc}$ , up to now not further used.
- Associated condensate can be estimated by assuming a given suspended condensate:

$$\overline{q_{csc}} = N_{sc} \cdot \mathsf{QSUSSC}, \qquad \overline{q_{c1}} = \mathsf{max}[\overline{q_{cs}}, \overline{q_{csc}}]$$

- ... But this would be too easy!
- Autoconversion has a  $q_{\ell cr}$ ,  $q_{icr}$  that will precipitate these shallow condensate that had to remain suspended
  - and we will re-condensate the shallow cloud at next time step

Let  $\overline{q_{CS}}$  be the condensate poduce by the stratiform cloud scheme.

- TOUCANS produces  $N_{SC}$ , up to now not further used.
- Associated condensate can be estimated by assuming a given suspended condensate:

$$\overline{q_{csc}} = N_{sc} \cdot \mathsf{QSUSSC}, \qquad \overline{q_{c1}} = \mathsf{max}[\overline{q_{cs}}, \overline{q_{csc}}]$$

- ... But this would be too easy!
- Autoconversion has a  $q_{\ell cr}$ ,  $q_{icr}$  that will precipitate these shallow condensate that had to remain suspended
  - $-\,$  and we will re-condensate the shallow cloud at next time step
- $\Rightarrow$  so creating an undue heat source in the lower part of the atmosphere.

Let  $\overline{q_{cs}}$  be the condensate poduce by the stratiform cloud scheme.

- TOUCANS produces  $N_{SC}$ , up to now not further used.
- Associated condensate can be estimated by assuming a given suspended condensate:

$$\overline{q_{\textit{csc}}} = \textit{N}_{\textit{sc}} \cdot \mathsf{QSUSSC}, \qquad \qquad \overline{q_{\textit{c1}}} = \mathsf{max}[\overline{q_{\textit{cs}}}, \overline{q_{\textit{csc}}}]$$

#### ... But this would be too easy!

- Autoconversion has a q<sub>lcr</sub>, q<sub>icr</sub> that will precipitate these shallow condensate that had to remain suspended
- and we will re-condensate the shallow cloud at next time step
- $\Rightarrow$  so creating an undue heat source in the lower part of the atmosphere.
  - Solution: protect this shallow cloud condensate against auto-conversion

• Solution: protect this shallow cloud condensate against auto-conversion ?

• Solution: protect this shallow cloud condensate against auto-conversion ?

... but only if there is no deep convection above !

- Solution: protect this shallow cloud condensate against auto-conversion ?
- ... but only if there is no deep convection above !
  - In practice:
    - In columns where shallow cloud must be protected, increase autoconversion thresholds and reduce autoconversion efficiencies

- Solution: protect this shallow cloud condensate against auto-conversion ?
- ... but only if there is no deep convection above !
- In practice:
  - In columns where shallow cloud must be protected, increase autoconversion thresholds and reduce autoconversion efficiencies
  - For this pass an array to acacon containing

$$\xi = \begin{cases} -N_{sc} & \text{where it must be protected} \\ \to 0 & \text{where } \max^{above} \left( \overline{-\omega} \right) > \omega_n > 0 \end{cases}$$

and

$$q'_{i|\ell cr} = q_{i|\ell cr} \cdot (1 - A \cdot \xi),$$
 zautef' = zautef  $\cdot (1 + B \cdot \xi)$ 

parameters  $A \equiv \text{ginvqcr} \sim 10$ ,  $B \equiv \text{ginvaut} \sim 0.99$ ,

## Protecting shallow clouds: effect of protection



## Protecting shallow clouds: thermodynamics



## Protecting shallow clouds: thermodynamics



# Cloud enhancement under a steep inversion (RPHI0)

• Under a steep inversion, the  $T^I$  is overestimated,  $\Rightarrow q_{\mathrm{sat}}$  as well.

## Cloud enhancement under a steep inversion (RPHI0)

- Under a steep inversion, the T' is overestimated,  $\Rightarrow q_{\rm sat}$  as well.
- Fixed by estimating a temperature gradient over a reference height below the inversion top (JFG's method).
- $\triangle T$  can be as large as 5K!
- Using  $q_{\rm sat}(\overline{T^I}-\triangle T)$  in the cloud scheme allows to compute directly the associated condensation.

## Cloud enhancement under a steep inversion (RPHI0)

- Under a steep inversion, the  $T^I$  is overestimated,  $\Rightarrow q_{\rm sat}$  as well.
- Fixed by estimating a temperature gradient over a reference height below the inversion top (JFG's method).
- $\triangle T$  can be as large as 5K!
- Using  $q_{\text{sat}}(\overline{T^I} \triangle T)$  in the cloud scheme allows to compute directly the associated condensation.
- More physical method possible with Smith scheme: use the mixing length from TOUCANS and build a multimodal local pdf (K. Van Weverberg, UKMO)

## Cloud enhancement under a steep inversion: clouds



## Cloud enhancement under a steep inversion: thermodynamics



## Cloud enhancement under a steep inversion: thermodynamics



## Deep convection and the cloud scheme

- Deep convection yields more intensive cloud condensate and smaller mesh fractions.
- The parameterization already provides  $q_{cc}$ ,  $N_c$
- ... but the resolved signal is not included!
- Smoothly skewing the pdf would increase or decrease both N and  $q_c$ .
- Instead and much easier, reduce and increase  $q_c$  in function of  $^{above}_{\max}\left(-\overline{\omega}-\omega_n\right)$

### Summer 2016 situation



### Summer 2016 situation



### Summer 2016



## 2009 strong convection disaster



#### Further on

- Resolved transport  $\neq$  subgrid transport: how to further enhance CSD subgrid transport.
- Other impacts of strong upwards velocity
  - Mixed phase / subgrid variability (Uc)
  - Autoconversion
  - Collection
  - Sedimentation
- Reduce the arbitrariness
  - Use turbulent mixing length for enhancing cloud under inversion top
  - Estimate directly the Smith pdf width using subgrid variances derived from TOUCANS.
- Why is it so difficult?
  - CRMs use a binary cloudiness
  - cloud scheme prognostic character based on an evolving diagnostic rather than on tendencies
  - Most models recognize they stay with a schizoïd representation of clouds between thermodynamics ad radiation