A two-energies turbulence scheme

Ivan Bašták Ďurán¹, Jean-François Geleyn², Filip Váňa³, Juerg Schmidli¹, Radmila Brožková⁴

Goethe University Frankfurt¹ Prev. aff.: CNRM Météo-France, Toulouse, France ² ECMWF, Reading, United Kingdom³ CHMI, Praha, Czech Republic⁴

Two-energies scheme

Single Column Model simulations

Long-term three-dimensional global simulations

Summary

└─Turbulence parametrization

Parametrization in numerical model

- Representation of unresolved and too complex processes in the model:
 - Turbulence
 - Convection
 - Radiation
 - Cloud processes (microphysics)
 - Surface processes
 - ...
- Based on physical understanding and/or heuristic knowledge

L Turbulence parametrization

 ψ - prognostic variable

-Turbulence parametrization

Reynolds-averaged basic equations for conservative variables:

u, *v*, *w* -wind components, θ_l - liquid water potential temperature, q_t total specific water content, S_{ψ} - remaining source terms

Turbulence parametrization

Local down-gradient turbulent diffusion

$$\overline{u'w'} = -K_M \frac{\partial u}{\partial z}, \quad \overline{v'w'} = -K_M \frac{\partial v}{\partial z},
\overline{\theta'_I w'} = -K_H \frac{\partial \theta_I}{\partial z}, \quad \overline{q'_t w'} = -K_H \frac{\partial q_t}{\partial z},$$

 K_M and K_H - turbulent diffusion coefficients for momentum and heat/moisture

-Turbulence parametrization

Turbulent diffusion - discretisation

RANS for Second Order Moments

$$\begin{split} \frac{\overline{s_{t}^{l^{2}}}}{\tau_{k}\frac{c_{4}}{2c_{3}}} &= -\overline{u_{i}^{l}s_{L}^{l}}\frac{\partial\overline{s_{L}}}{\partial x_{i}}, \qquad S_{ij} &= \frac{1}{2}\left(\frac{\partial\overline{u}_{i}}{\partial x_{j}} + \frac{\partial\overline{u}_{j}}{\partial x_{i}}\right), \\ \frac{\overline{q_{t}^{l^{2}}}}{\tau_{k}\frac{c_{4}}{2c_{3}}} &= -\overline{u_{i}^{l}q_{t}^{l}}\frac{\partial\overline{q}_{t}}{\partial x_{i}}, \qquad R_{ij} &= \frac{1}{2}\left(\frac{\partial\overline{u}_{i}}{\partial x_{j}} - \frac{\partial\overline{u}_{j}}{\partial x_{i}}\right), \\ \frac{2\overline{q_{t}^{l}s_{L}^{l}}}{\tau_{k}\frac{c_{4}}{2c_{3}}} &= -\frac{\partial\overline{s_{L}}}{\partial\overline{z}}\overline{w^{\prime}q_{t}^{\prime}} - \frac{\partial\overline{q_{t}}}{\partial\overline{z}}\overline{w^{\prime}s_{L}^{\prime}}, \qquad B_{ij} &= (0,0,E_{s_{L}}), \quad \beta_{q_{t},i} \equiv (0,0,E_{q_{t}}), \\ \frac{2\overline{q_{t}^{l}s_{L}^{l}}}{\tau_{k}\frac{c_{4}}{2c_{3}}} &= -\frac{\partial\overline{s_{L}}}{\partial\overline{z}}\overline{w^{\prime}q_{t}^{\prime}} - \frac{\partial\overline{q_{t}}}{\partial\overline{z}}\overline{w^{\prime}s_{L}^{\prime}}, \qquad B_{ij} &\equiv (0,0,E_{s_{L}}), \quad \beta_{q_{t},i} \equiv (0,0,E_{q_{t}}), \\ A_{ij}\overline{u_{j}^{\prime}s_{L}^{\prime}} &= -\tau_{k}\overline{u_{i}^{\prime}u_{j}^{\prime}}\frac{\partial\overline{s}_{\overline{L}}}{\partial\overline{x}_{j}} \qquad B_{ij} &= -\lambda_{1}e_{k}\tau_{k}S_{ij} - \lambda_{2}\tau_{k}\Sigma_{ij} - \lambda_{3}\tau_{k}Z_{ij} \\ +\lambda_{4}B_{ij}, &+ \frac{2O_{\lambda}}{c_{4}}\tau_{k}\left(\beta_{s_{L},i}\overline{s_{L}^{\prime^{2}}} + \beta_{q_{t},i}\overline{s_{L}^{\prime}q_{t}^{\prime}}\right), \Sigma_{ij} &= b_{ik}S_{kj} + S_{ik}b_{kj} - \frac{2}{3}\delta_{ij}b_{km}S_{mk}, \\ A_{ij}\overline{u_{j}^{\prime}q_{t}^{\prime}} &= -\tau_{k}\overline{u_{i}^{\prime}u_{j}^{\prime}}\frac{\partial\overline{q}_{\overline{t}}}{\partial\overline{x}_{j}} \qquad Z_{ij} &= R_{ik}b_{kj} - b_{ik}R_{kj}, \\ A_{ij} &= \lambda_{5}\delta_{ij} + \lambda_{6}\tau_{k}S_{ij} + \lambda_{7}\tau_{k}R_{ij}, &- \frac{2}{3}\delta_{ij}\left(\beta_{s_{L},k}\overline{u_{k}^{\prime}s_{L}^{\prime}} + \beta_{q_{t},i}\overline{u_{j}^{\prime}q_{t}^{\prime}}\right), \end{split}$$

Turbulent diffusion coefficients in TKE scheme

$$K_{M} = \frac{\nu^{4}}{C_{\epsilon}} \chi_{3}(Ri_{f}) \sqrt{e_{k}}L, \quad K_{H} = C_{3} \frac{\nu^{4}}{C_{\epsilon}} \phi_{3}(Ri_{f}) \sqrt{e_{k}}L$$

closure constants

- stability functions influence of stratification
- stability parameter influence of stratification
- Iength scale scale of the problem
- TKE measure of turb. intensity

 $\begin{aligned} Ri_{f} &\equiv \left(\frac{g}{\partial_{v}} \overline{\partial_{v}} w'\right) / \left(\overline{u'w'} \frac{\partial u}{\partial z} + \overline{v'w'} \frac{\partial v}{\partial z}\right) = Ri \frac{K_{H}}{K_{M}} \text{ - flux Richardson number,} \\ Ri &\equiv \left(\frac{g}{\partial_{v}} \frac{\partial \theta_{v}}{\partial z}\right) / \left(\sqrt{\left(\frac{\partial u}{\partial z}\right)^{2} + \left(\frac{\partial v}{\partial z}\right)^{2}}\right) \text{ - gradient Richardson num.} \end{aligned}$

Framework of stability functions (Bastak et al. 2014):

$$\chi_3(Ri) = \frac{1 - \frac{Ri_f}{R}}{1 - Ri_f} ,$$

$$\phi_3(Ri) = \frac{1 - \frac{Ri_f}{P}}{1 - Ri_f} ,$$

$$\frac{Ri}{Ri_f} = \frac{P(R - Ri_f)}{C_3 R (P - Ri_f)}$$

 $0 < \lim_{Ri \to \infty} \mathbf{P} = Ri_{fc} < 1, \ Ri_{fc} < \lim_{Ri \to \infty} \mathbf{R} \equiv R_{\infty} \leq 1.$

(*R*, *P* - constants or functional dependencies, $Ri_{fc} = \lim_{Ri\to\infty} Ri_f$ - critical flux Richardson number)

Framework of stability functions (Bastak et al. 2014):

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Length scales L

- Prandtl-type mixing length (Cedilnik, 2005): $L_{1} = \frac{(C_{\kappa}C_{\epsilon})^{\frac{1}{4}}}{C_{\kappa}} \frac{\kappa z}{1 + \frac{\kappa z}{\lambda_{m}} \left[\frac{1 + \exp\left(-a_{m}\sqrt{\frac{z}{H_{pbl}} + b_{m}}\right)}{\beta_{m/h} + \exp\left(-a_{m}\sqrt{\frac{z}{H_{pbl}} + b_{m}}\right)} \right]}$
- Bougeault a Lacarrère (1989) :

$$L_{2} = \left(\frac{L_{up}^{-\frac{4}{5}} + L_{down}^{-\frac{4}{5}}}{2}\right)^{-\frac{1}{4}}$$

• combination : $L = \min(L_1, L_2)$

 $a_m, \ b_m, \ \lambda_m$ - tuning constants, H_{pbl} - PBL height, $L_{up/down}(e_k)$ - upward/downward free path

F

Prognostic TKE equation

$$\frac{de_{k}}{dt} = \frac{\partial}{\partial z} \left(K_{e_{k}} \frac{\partial e_{k}}{\partial z} \right) + SHEA + BUOY - \epsilon_{k},$$

$$e_{k} \equiv \frac{\overline{u'u'} + \overline{v'v'} + \overline{w'w'}}{2} \quad \text{-Turbulence Kinetic Energy,}$$

$$SHEA \equiv -\overline{u'w'} \frac{\partial u}{\partial z} - \overline{v'w'} \frac{\partial v}{\partial z} \quad \text{-Shear term,}$$

$$BUOY \equiv \frac{g}{\theta_{v}} \overline{\theta'_{v}w'} = E_{q_{t}} \overline{q'_{t}w'} + E_{\theta_{l}} \overline{\theta'_{l}w'} \quad \text{-Buoyancy term}$$

$$\epsilon_{k} \equiv \frac{2e_{k}}{\tau_{k}} \quad \text{-Dissipation term}$$

 K_{e_k} - turb. exchange coefficients for e_k ; τ_k and τ_s - are dissipation time scales; E_{q_t} and E_{θ_l} are cloud-dependent buoyancy flux coefficients.

Buoyancy flux coefficients (Marquet and Geleyn, 2013)

 $E_{s_{sL}} = \frac{g M(C)}{\overline{C} \overline{T}},$ $E_{q_t} = g M(C) \left\{ \left(\frac{R_v - R_d}{R_d \cdot \overline{a_d} + R_v \cdot \overline{a_v}} - \frac{c_{pv} - c_{pd}}{\overline{c_p}} \right) \right\}$ $+C^*\left[\frac{L_{vs}(T)(R_d.\overline{q_d}+R_v.\overline{q_v})}{\overline{c}\cdot\overline{T}R}-1\right]$. $\left|\frac{R_{v}-R_{d}}{R_{d}.\overline{q_{d}}+R_{v}.\overline{q_{v}}}+\frac{1}{(1-q_{t})(1+D_{c})}\right|\right\}$ $(M(C) = \frac{1+D_C}{1+D_C\left(1+C\left[\frac{L_{VS}(\overline{T})(R_d,\overline{q}_d+R_V,\overline{q}_V)}{\overline{\tau}}-1\right]\right)}, D_C = \frac{L_{VS}(\overline{T})\frac{r_s^T}{r_s^T}}{R_d\,\overline{T}} = \frac{\overline{T}}{\overline{p}-e_{sat}(\overline{T})}\frac{\partial e_{sat}(\overline{T})}{\partial \overline{T}} \)$ (C^* - turbulence cloud fraction influenced by skewness, C -cloud fraction in the

Turbulence cloud fraction influenced by skewness

$$C^{*} = C^{F(C_{n})}, \quad F(C_{n}) = 0.5 \left[\sqrt{(6.25 C_{n})^{2} + 4} - 6.25 C_{n} \right]$$

$$C_{n} = \frac{-\frac{\overline{w's'_{s_{l}}}}{\widehat{c_{p} T}} - \left(\frac{R_{v} - R_{d}}{R_{d} \cdot \widehat{q_{d}} + R_{v} \cdot \widehat{q_{v}}} - \frac{c_{pv} - c_{pd}}{\widehat{c_{p}}} \right) \overline{w'q'_{t}}}{\left[\frac{L_{vs}(\widehat{T})(R_{d} \cdot \widehat{q_{d}} + R_{v} \cdot \widehat{q_{v}})}{\widehat{c_{p} T}R_{v}} - 1 \right] \left[\frac{R_{v} - R_{d}}{R_{d} \cdot \widehat{q_{d}} + R_{v} \cdot \widehat{q_{v}}} + \frac{1}{(1 - \widehat{q_{t}})(1 + D_{c})} \right] \overline{w'q'_{t}}}$$

(C_n - skewness parameter)

Fitting of $C^*(C, C_n)$ on LES data (courtesy of D. Lewellen)

▲ロト ▲舂 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ のへで

Limitations of TKE scheme

- down-gradient parameterization of turbulent fluxes
- stability parameter approximated via local gradients:

 $\begin{aligned} Ri_{f} &\equiv -\frac{BOUY}{SHEAR} \approx Ri\frac{K_{H}}{K_{M}} \\ Ri &\equiv \left(\frac{g}{\theta_{v}}\frac{\partial\theta_{v}}{\partial z}\right) / \left(\sqrt{\left(\frac{\partial u}{\partial z}\right)^{2} + \left(\frac{\partial v}{\partial z}\right)^{2}}\right) \\ \Rightarrow \text{ may require shallow conv. parametr. to mix across and in to the locally stable layers} \end{aligned}$

• feedback between mixing and stability parameter may cause oscillations

└─Two-energies scheme

Two-energies scheme

- based on Zilitinkevich et al. (2013)
 dry case and stable stratification
- addition of second prognostic energy to TKE scheme
- stability parameter depends on prognostic turbulence energies
 ⇒ (attains) prognostic and non-local properties
- (still) down-gradient parameterization of turbulent fluxes

_Two-energies scheme

Two prognostic turbulence energies (Bastak et al., submitted to JAS)

$$\begin{aligned} \frac{de_k}{dt} &= \frac{\partial}{\partial z} \left(K_{e_k} \frac{\partial e_k}{\partial z} \right) + SHEA + BUOY - \frac{2 e_k}{\tau_k} \\ \frac{de_s}{dt} &= \frac{\partial}{\partial z} \left(K_{e_s} \frac{\partial e_s}{\partial z} \right) + SHEA - \frac{2 e_s}{\tau_s} , \\ e_s &\equiv e_k + \frac{E_{q_t} \overline{q_t'^2}}{2 \frac{\partial q_t}{\partial z}} + \frac{E_{\theta_l} \overline{\theta_l'^2}}{2 \frac{\partial \theta_l}{\partial z}} , \\ Ri_f^{TE} &\equiv -\frac{BOUY}{SHEA} = \frac{e_s - e_k}{e_s + e_k \left(\frac{C_4}{2 C_3} - 1 \right)} \end{aligned}$$

Single Column Model (SCM)

- OpenIFS model
- idealized environment with only one model column
- external forcings (tendencies, fluxes, boundary conditions) can be prescribed
- study of individual parametrizations / specific properties
- Large Eddy Simulation (LES) microHH used as reference

SCM experiments

- ARM: Continental shallow cumulus

 diurnal cycle
- BOMEX: Non-precipitating trade cumulus
 quasi steady state
- GABLS(1): Stable stratification
- configuration: time step=900 seconds, 91 atmospheric vertical levels, 17 levels in the lowest 2 km

ARM case - $w'q'_t$

TKEM-GR - TKE scheme with R_{if} computed from gradients, TKEM-TE - 2 energy scheme, IFS-EDMF+SCP - IFS turbulence scheme with EDMF and parametrization of shallow convection, LES-ALL - microHH model. Dotted areas indicate counter-gradient regions.

ARM case - $w'\theta'_1$

ARM case - vertical profiles of θ_l and q_t

TKEM-FL - TKE scheme with Rif computed from fluxes

Counter-gradient fluxes

- two-energy scheme is unable to parametrize counter-gradient fluxes
- counter-gradient regions in ARM case:
 - above the PBL
 - small magnitude of fluxes
 - in PBL layers with near constant θ_I
 - two-energy scheme has near-constant θ_l profile, but enforces opposite signs of the vertical gradient and the turbulent flux
- down-gradient approach is sufficiently accurate for ARM case

A two-energies turbulence scheme

Single Column Model simulations

BOMEX case - $w'q'_t$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

A two-energies turbulence scheme

Single Column Model simulations

BOMEX case - $w'\theta'_1$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

BOMEX case - vertical profiles of θ_l and q_t

▲□▶ ▲□▶ ▲ 国▶ ▲ 国▶ → 国 → のへで

GABLS(1) case - vertical profiles of θ_l and q_t

◆ロ → ◆ □ → ▲ 三 → ▲ □ → ▲ □ → ▲ □ →

Long-term three-dimensional global simulations

Long-term three-dimensional global simulations

- 4-member ensemble simulation of the uncoupled global IFS model for the 2000-2001
- two-energy scheme replaces turbulence scheme and shallow convection parametrization is turned off
- comparison with full IFS physics (CY43R3)
- reanalyses and observations used as reference

 igsir Long-term three-dimensional global simulations

2m-temperature and 2m-dew point

go7n - IFS physics, gugn - two-energies scheme in IFS physics

ロト・国・・国・・国・ つんの

 igsir Long-term three-dimensional global simulations

Liquid water path and total cloud cover

175 150 125

100

-75

-100 -125 -150 -175 -200

Liquid water path

Difference gugn - SSMI Wentz V6 Mean err -19 RMS 29.5

Total cloud cover

Difference gugn - CALIPSO OBS4MIP 50N-S Mean err 1.98 50N-S rms 8.72

CALIPSO data as reference

Summary (1)

- two-energy scheme is extension of TKE scheme with additional prognostic turbulence energy
- stability parameter depends on prognostic turbulence energies
 ⇒ (attains) prognostic and non-local properties
- turbulent fluxes are parametrized in down-gradient way

Summary (2)

- parametrization of both turbulence and clouds in the PBL - no shallow convection parametrization is used
- the turbulent fluxes of two-energy scheme are more continuous in time and space than in TKE scheme and EDMF
- two-energy scheme enables transport across locally stable layers and deeper mixing
- thermals in the two-energies scheme are too intense and less frequent than in the LES for BOMEX case

Summary (3)

- 2TE scheme behaves reasonable well in a full atmospheric model in the long-term 3D simulation
- 2m-temperature and 2m-dew point scores are comparable between IFS and 2TE, 2TE has better Arctic region
- 2TE scheme in IFS overestimates cloud cover on low levels
- further calibration possible/required especially for cloud cover

What next?

- o more testing
 - Stratocumulus cases, transition cases,..
- extension with the Assumed PDF method (Golaz et al. 2002)
- revision of length scale formulation
- introduction of scale-awareness:
 - dynamics of the model
 - stochastic parametrizations (Bengtsson et al., 2013; Sakradzija et al., 2016)
 - 3D turbulence