SLHD

(Semi-Lagrangian Horizontal Diffusion)

Filip Váňa

filip.vana@chmi.cz

ONPP / ČHMÚ

Horizontal diffusion

Model equation for \vec{v} :

$$\frac{d\vec{v}}{dt} + \underbrace{2\vec{\Omega} \times \vec{v}}_{\text{coriolis}} + \underbrace{RT\nabla \ln p + \nabla \Phi}_{\text{pressure force}} = \vec{\mathcal{F}}_{\vec{v}} + \vec{\mathcal{S}}_{\vec{v}} + \vec{K}_{\vec{v}}$$

with:

$\vec{\mathcal{F}}_{\vec{v}}$ representing diabatic processes $\vec{\mathcal{S}}_{\vec{v}}$ representing sources/sinks $\vec{K}_{\vec{v}}$ representing horizontal diffusion

Formal mathematical reason

avoid the hyperbolic kind of model equations

Formal mathematical reason

avoid the hyperbolic kind of model equations \Rightarrow sufficient to be represented by $K\nabla X$

Formal mathematical reason

avoid the hyperbolic kind of model equations

 \Rightarrow sufficient to be represented by $K\nabla X$

 \Rightarrow numerical schemes are diffusive, no special need for additional extra diffusion

Formal mathematical reason

avoid the hyperbolic kind of model equations

 \Rightarrow sufficient to be represented by $K\nabla X$

 \Rightarrow numerical schemes are diffusive, no special need for additional extra diffusion

Parameterization of physical processes

horizontal turbulence and molecular exchange; with $\Delta x \approx$ 9.5 km the impact to u, v is of 10^{-7} - 10^{-3} m/s

Formal mathematical reason

avoid the hyperbolic kind of model equations

 \Rightarrow sufficient to be represented by $K \nabla X$

 \Rightarrow numerical schemes are diffusive, no special need for additional extra diffusion

Parameterization of physical processes

horizontal turbulence and molecular exchange; with $\Delta x \approx 9.5$ km the impact to u, v is of $10^{-7} \cdot 10^{-3}$ m/s \Rightarrow has to be represented by a non-linear operator being function of the flow field

Formal mathematical reason

avoid the hyperbolic kind of model equations

 \Rightarrow sufficient to be represented by $K\nabla X$

 \Rightarrow numerical schemes are diffusive, no special need for additional extra diffusion

Parameterization of physical processes

horizontal turbulence and molecular exchange; with $\Delta x \approx 9.5$ km the impact to u, v is of $10^{-7} \cdot 10^{-3}$ m/s \Rightarrow has to be represented by a non-linear operator being function of the flow field \Rightarrow generally only conditionally stable

Formal mathematical reason

avoid the hyperbolic kind of model equations

 \Rightarrow sufficient to be represented by $K\nabla X$

 \Rightarrow numerical schemes are diffusive, no special need for additional extra diffusion

Parameterization of physical processes

horizontal turbulence and molecular exchange; with $\Delta x \approx$ 9.5 km the impact to u, v is of 10^{-7} - 10^{-3} m/s \Rightarrow has to be represented by a non-linear operator

being function of the flow field

- \Rightarrow generally only conditionally stable
- ⇒ for scales » o(1km) typically neglected

Numerical filter

removing the accumulated energy from the end of a model resolved spectrum and filtration of the numerical noise; with $\Delta x \approx$ 9.5 km the impact to u, v is of 10^{-2} - 10^{0} m/s

Numerical filter

removing the accumulated energy from the end of a model resolved spectrum and filtration of the numerical noise; with $\Delta x \approx 9.5$ km the impact to u, v is of $10^{-2} \cdot 10^{0}$ m/s \Rightarrow linear operator of $K \nabla^{r} X$ kind is sufficient (seen through scores or climate simulations)

Numerical filter

removing the accumulated energy from the end of a model resolved spectrum and filtration of the numerical noise; with $\Delta x \approx 9.5$ km the impact to u, v is of 10^{-2} - 10^{0} m/s \Rightarrow linear operator of $K\nabla^r X$ kind is sufficient (seen through scores or climate simulations)

- Allows absolutely stable implicit formulation
- Algorithmically efficient
- Straightforward tuning through K and r
- Almost exclusively used in atmospheric models

Horizontal diffusion in ALADIN

Spectral diffusion

- linear diffusion K = const.
- by default r = 4

Horizontal diffusion in ALADIN

Spectral diffusion

- linear diffusion K = const.
- by default r = 4

SLHD (since 2003)

- grid point space scheme
- non-linear scheme $\approx K(d) \nabla^r X$
- ∇^r is represented by sL interpolators ($r \approx$ 2-4)

SLHD design

$$X_F^+ = \left(1 - \frac{\Delta t}{2}\mathcal{L}\right)^{-1} \left[\underbrace{\left(1 + \frac{\Delta t}{2}\mathcal{L}\right)X_O^- + \Delta t\mathcal{F}_O^- + \frac{\Delta t}{2}\mathcal{N}_O^* + \frac{\Delta t}{2}\mathcal{N}_F^*}_{I}\right]$$

SLHD design

$$X_F^+ = \left(1 - \frac{\Delta t}{2}\mathcal{L}\right)^{-1} \left[\underbrace{\left(1 + \frac{\Delta t}{2}\mathcal{L}\right)X_O^- + \Delta t\mathcal{F}_O^- + \frac{\Delta t}{2}\mathcal{N}_O^*}_{I} + \frac{\Delta t}{2}\mathcal{N}_F^*\right]$$

$$I = (1 - \kappa)I_A + \kappa I_D = I_A + \kappa (I_D - I_A)$$

SLHD design

$$X_F^+ = \left(1 - \frac{\Delta t}{2}\mathcal{L}\right)^{-1} \left[\underbrace{\left(1 + \frac{\Delta t}{2}\mathcal{L}\right)X_O^- + \Delta t\mathcal{F}_O^- + \frac{\Delta t}{2}\mathcal{N}_O^*}_{I} + \frac{\Delta t}{2}\mathcal{N}_F^*\right]$$

$$I = (1 - \kappa)I_A + \kappa I_D = I_A + \kappa (I_D - I_A)$$

$$\kappa = F(d, \Delta x, \Delta t), \quad d = \sqrt{\left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y}\right)^2 + \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}\right)^2}$$

SLHD design - κ

$$\kappa = \frac{f(d^0)\Delta t}{1 + f(d^0)\Delta t}.$$

ALARO Training Course, Radostovice, March 2007 - p. 7

SLHD design - κ

$$\kappa = \frac{f(d^0)\Delta t}{1 + f(d^0)\Delta t}.$$

$$f(d) = ad\left(\max\left[1, \frac{d}{d_0}\right]\right)$$
 SLHDB

SLHD design - κ

$$\kappa = \frac{f(d^0)\Delta t}{1 + f(d^0)\Delta t}.$$

$$f(d) = ad \left(\max \left[1, \frac{d}{d_0} \right] \right)$$

SLHDB
$$a = 2 \quad \text{SLHDA0} \quad \left(\frac{[\Delta x]_{ref}}{[\Delta x]} \right)$$

$$d_0 = \frac{\text{SLHDD00}}{2} \quad \left(\frac{[\Delta x]_{ref}}{[\Delta x]} \right)$$

ZSLHDP3

SLHD design - I_D

Linear vs. homogeneous interpolation

SLHD design - I_D

Linear vs. homogeneous interpolation

SLHD - implementation specificity

SLHD - implementation specificity

SLHD - ALADIN implementation

Vertical profile of horizontal diffusions in ALADIN

diffusion coefficient

SLHD tuning

Ideal tuning

SLHD tuning

- Ideal tuning
 - Compromise tuning

SLHD tuning

- Ideal tuning
- Compromise tuning
- Spectral diffusion

SLHD properties

RMSE evolution of the MSL pressure Parallel test, 19 days

SLHD properties

Lagrangian cubic interpolation

\Rightarrow Natural 4 points cubic spline

New interpolators for SL

Dimensionless damping rate

Damping factor for N = 100, m = 10

Damping factor for N = 100, m = 40

SLHD on moisture

Total cloudiness forecast for December 15th, 2004

linear diffusion vs. SLHD

ALADIN/LACE analyzis

ALADIN/LACE operational forecast for 24 hours

ALADIN/LACE forecast for 24 hours with SLHD

ASCS - Aladin Space Cross Section

Operational forecast with lin. diffusion

SLHD simulation

Adriatic storm II - May 6th, 2004

Slovakia - May 17th, 2006

ALADIN/Slovakia forecast for 36 hours

Slovakia - May 17th, 2006

ALADIN/Slovakia forecast for 39 hours

Squall line simulated by AROME

00 +15 UTC May 22nd, 2006

Radar vs. AROME with spectral diffusion

Squall line simulated by AROME

00 +15 UTC May 22nd, 2006

Radar vs. AROME with SLHD

More realistic (non-linear, wind triggered)

- More realistic (non-linear, wind triggered)
- Local and 3D character

- More realistic (non-linear, wind triggered)
- Local and 3D character
- Targeted security

- More realistic (non-linear, wind triggered)
- Local and 3D character
- Targeted security
- Applicable to any advected field

- More realistic (non-linear, wind triggered)
- Local and 3D character
- Targeted security
- Applicable to any advected field
- No additional time-step constraints

- More realistic (non-linear, wind triggered)
- Local and 3D character
- Targeted security
- Applicable to any advected field
- No additional time-step constraints
- Turns damping side effect of s-L advection to useful tool

- More realistic (non-linear, wind triggered)
- Local and 3D character
- Targeted security
- Applicable to any advected field
- No additional time-step constraints
- Turns damping side effect of s-L advection to useful tool
- Offers elegant solution for BBC condition in NH

Special care to control orography triggered noise

- Special care to control orography triggered noise
- Needs several time-steps to act adequately

- Special care to control orography triggered noise
- Needs several time-steps to act adequately
- Limited (and complicated) tuning

- Special care to control orography triggered noise
- Needs several time-steps to act adequately
- Limited (and complicated) tuning
- Conservative properties are worsened

- Special care to control orography triggered noise
- Needs several time-steps to act adequately
- Limited (and complicated) tuning
- Conservative properties are worsened
- Additional cost

1. For most of the cases linear and non-linear diffusions perform comparably.

- 1. For most of the cases linear and non-linear diffusions perform comparably.
- 2. There is a group of cases for which a linear diffusion is not always sufficient.

- 1. For most of the cases linear and non-linear diffusions perform comparably.
- 2. There is a group of cases for which a linear diffusion is not always sufficient.
- 3. Such situations are typically related to extreme weather events.

- 1. For most of the cases linear and non-linear diffusions perform comparably.
- 2. There is a group of cases for which a linear diffusion is not always sufficient.
- 3. Such situations are typically related to extreme weather events.

Realistic simulation of severe weather events needs something better than linear diffusion.